1 Lecture 05: The limit laws

- Some basic limits and the limit laws
- Examples: Using the limit laws to compute limits. Limits of polynomials
- Examples where the limit laws do not apply

1.1 Limit laws

In this section, we will outline how we can systematically compute limits. This relies on two steps: 1) we will give a couple of elementary limits 2) we will give laws or rules that help us to combine the elementary limits to study more interesting functions. We will not give a careful proof of the limit laws. To give a proof involves providing a more careful definition of limits than we have given in this course.

Theorem 1 Suppose f and g are functions defined in an open interval containing a, except perhaps at a and we have

$$
\lim _{x \rightarrow a} f(x)=L, \quad \lim _{x \rightarrow a} g(x)=M
$$

Then

$$
\begin{align*}
\lim _{x \rightarrow a}(f(x)+g(x)) & =L+M \tag{2}\\
\lim _{x \rightarrow a}(f(x) g(x)) & =L \cdot M \tag{3}\\
\lim _{x \rightarrow a} \frac{1}{g(x)} & =\frac{1}{M}, \quad \text { if } M \neq 0 . \tag{4}\\
\lim _{x \rightarrow a} \sqrt[n]{f(x)} & =\sqrt[n]{L}, \quad \text { if } n=2,3, \ldots \text { and } L>0 \text { if } n \text { is even. } \tag{5}
\end{align*}
$$

We emphasize that in this theorm L and M are not allowed to be infinite. Arithmetic with infinity can be very tricky. For example $\lim _{x \rightarrow 0} a x^{2}=0, \lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty$, and $\lim _{x \rightarrow 0}\left(a x^{2} \frac{1}{x^{2}}\right)=a$. Thus there is no way to define $0 \cdot \infty$ so that the limit law (3) holds.

Our basic limits are.
Proposition 6 If a and c are real numbers, then

$$
\lim _{x \rightarrow a} c=c, \quad \lim _{x \rightarrow a} x=a .
$$

Using the limit laws, we can evaluate large classes of limits. For example, we may take the limit of any polynomial.

Example. Find the limit of $\lim _{x \rightarrow 3} 5 x^{2}-2$.

Solution. We may use (2) and (3) to obtain

$$
\lim _{x \rightarrow 3}\left(5 x^{2}-2\right)=\left(\lim _{x \rightarrow 3} 5\right)\left(\lim _{x \rightarrow 3} x\right)\left(\lim _{x \rightarrow 3} x\right)+\lim _{x \rightarrow 3}(-2) .
$$

Each of the limits on the right is given in Proposition 6 Thus, we have

$$
\lim _{x \rightarrow 3}\left(5 x^{2}-2\right)=5 \cdot 3^{2}+-2=43
$$

It should be easy to see that by following the arguments above we can show that if R is a rational function and a is in the domain of R,

$$
\lim _{x \rightarrow a} R(x)=R(a) .
$$

Also, for a rational number p / q,

$$
\lim _{x \rightarrow a} x^{p / q}=a^{p / q}
$$

provided $a>0$ if q is even and $a \neq 0$ if $p / q<0$.

1.2 Limits where the limit rules do not apply

Some more interesting examples include

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}, \quad \lim _{x \rightarrow 1} \frac{x+1}{x^{2}-1} \quad \lim _{x \rightarrow 0} \frac{\sin (x)}{x} .
$$

In each of these limits, the limit rules do not apply. We are tempted to use the quotient rule, but the limit of the denominator in each fraction is 0 . The first two may be studied by simplifying. We are not yet ready to study the third.

Example. Find the limits

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}, \quad \lim _{x \rightarrow 1} \frac{x+1}{x^{2}-1}
$$

Solution. We cannot directly apply the rule for the limit of a quotient to evaluate the first limit since the limit of the denominator, $\lim _{x \rightarrow 1}(x-1)=0$. However, this does not mean the limit does not exist. We simplify

$$
\frac{x^{2}-1}{x-1}=x+1
$$

Since this is valid for all $x \neq 1$, we may simplify both sides to obtain

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1}(x+1)=2 .
$$

For the second, we simplify

$$
\frac{x+1}{x^{2}-1}=\frac{1}{x-1} .
$$

We have

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty \quad \lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=+\infty
$$

Thus the limit $\lim _{x \rightarrow 1} \frac{x+1}{x^{2}-1}$ does not exist.
Example. Suppose that the position function of a particle is given by $p(t)=t^{2}$. Find the instantaneous velocity at a.

Solution. On a small interval $[a, t]$, the average velocity is

$$
\frac{p(t)-p(a)}{t-a}=\frac{t^{2}-a^{2}}{t-a}=t+a .
$$

Taking the limit,

$$
\lim _{t \rightarrow a} \frac{t^{2}-a^{2}}{t-a}=\lim _{t \rightarrow a}(t+a)=2 a
$$

