1 Lecture 06: Continuous functions

- Definitions: Continuity, left continuity, right continuity, continuity on intervals
- Examples-jump discontinuities, infinite discontinuities, other
- Continuous functions and limits

1.1 Definitions

Definition. Let f be a function defined on an open interval containing a. We say that f is continuous at a if we have

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Example. Let

$$
f(x)= \begin{cases}k x, & x>2 \\ x^{2}, & x \leq 2\end{cases}
$$

Find k so that f is continuous at 2 .
Solution. For f to be continuous at 2, we need that $\lim _{x \rightarrow 2} f(x)$ to exist and equal $f(2)=4$. Since the function is defined piecewise, it is natural to look at the left and right limits separately. From our limit laws, we have

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}=4 \quad \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} k x=2 k .
$$

Thus for the limit to exist, we need $2 k=4$ or $k=2$ and then $\lim _{x \rightarrow 2} f(x)=4$. Since $f(2)=4, f$ will be continuous for this choice of k.

We also need the following variants of continuity.

- A function f is left-continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.
- A function f is right-continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$.
- A function f is continuous on an open interval (a, b) if f is continuous at each point c in the interval.
- A function f is continuous on a closed interval $[a, b]$ if f is continuous at each point c in the interval (a, b), right-continuous at a, and left-continuous at b.

1.2 Some discontinous functions

Example. Let

$$
f(x)= \begin{cases}x /|x|, & x \neq 0 \\ 0, & x=0\end{cases}
$$

What can you say about the continuity of f.

Solution. It is easy to see that if $a>0 \lim _{x \rightarrow a} f(x)=1=f(a)$ and if $a<0$, then $\lim _{x \rightarrow a} f(x)=-1=f(a)$.

At $x=0$, we have

$$
\lim _{x \rightarrow 0^{+}} f(x)=1, \quad \lim _{x \rightarrow 0^{-}} f(x)=-1
$$

Thus the limit does not exist and the function cannot be continuous.
When a function is as in the previous example: the one-sided limits at a exist and are different, we say that f has a jump discontinuity at a.

A second example is that the one-sided limits do not exist, but are $+\infty$ or $-\infty$. Then we say that the function has an infinite discontinuity. An example is the function

$$
f(x)=\frac{1}{x-8}
$$

which has an infinite discontinuity at 8 .
Exercise. Let

$$
f(x)= \begin{cases}\sin (\pi / x), & x \neq 0 \\ 0 & x=0\end{cases}
$$

Determine if f is continuous at 0 .

1.3 Continuous functions

Most of the functions we work with every day in calculus are continuous on their domains.

We give a list

- Polynomials are continuous on $\mathbf{R}=(-\infty, \infty)$, rational functions are continuous on their domain.
- Exponential functions a^{x} are continuous on $(-\infty, \infty)$.
- $\sin (x)$ and $\cos (x)$ are continuous on the real line $(-\infty, \infty)$

The following rules for combining continuous functions give us many more continuous functions.

- If f and g are continuous at a, then $f+g$ and $f g$ are continuous at a. If, in addition, $g(a) \neq 0$, then f / g is continuous at a.
- If f is continuous at a and g is continuous at $f(a)$, then $g \circ f$ is continuous at a.
- If f is continuous with domain an open interval I, and range R and f^{-1} exists, then f^{-1} is continuous on R.

Using these rules, we obtain a number of other continuous functions.

- Rational functions are continuous on their domain. This follows since a rational function is a quotient of polynomials.
- A logarithm function $\log _{a}(x)$ is continuous on $(0, \infty)$. This follows since the logarithm $\log _{a}(x)$ is the inverse of a^{x}.
- If $n=3,5, \ldots$ is an odd positive integer $\sqrt[n]{x}$ is continuous on $(-\infty, \infty)$ This follows since $\sqrt[n]{x}$ is the inverse of x^{n}.
- If $n=2,4, \ldots$ is an even positive integer $\sqrt[n]{x}$ is continuous on $[0, \infty)$. This follows since $\sqrt[n]{x}$ is the inverse of x^{n} on the domain $[0, \infty)$, for n even.
- $\tan (x)$ is continuous $\{x: x \neq(2 k+1) \pi / 2$ for $k \neq 0, \pm 1, \pm 2, \ldots\}$. This follows since $\tan (x)$ is the quotient of $\sin (x)$ and $\cos (x)$.

Exercise. Determine where $\cot (x), \csc (x)$, and $\sec (x)$ are continuous.
Once we know a function f is continuous, we may use the definition of continuity,

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

to evaluate a limit. This is known as the direct substitution rule. Be sure to note that a function is continuous before applying the direct substitution rule.

Example. Use the direct substitution rule to evaluate the limits

$$
\lim _{x \rightarrow 0} \frac{e^{x}+1}{e^{2 x}+1} \quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{2 x}-1} .
$$

Solution. Since $\left(e^{x}+1\right) /\left(e^{2 x}+1\right)$ is continuous at $x=0$, we may use the direct substitution rule to find $\lim _{x \rightarrow 0} \frac{e^{x}+1}{e^{2 x}+1}=1$. For the second limit, we notice that $g(x)=$ $\frac{e^{x}-1}{e^{2 x}-1}$ is undefined at $x=0$. However, if we factor, we may write

$$
\frac{e^{x}-1}{e^{2 x}-1}=\frac{e^{x}-1}{\left(e^{x}-1\right)\left(e^{x}+1\right)}=\frac{1}{e^{x}+1}
$$

The function $1 /\left(e^{x}+1\right)$ is continuous at $x=0$. Thus we have

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{2 x}-1}=\lim _{x \rightarrow 0} \frac{1}{e^{x}+1}=1 / 2
$$

