1 Lecture 08: The squeeze theorem

- The squeeze theorem
- The limit of $\sin (x) / x$
- Related trig limits

1.1 The squeeze theorem

Example. Is the function g defined by

$$
g(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

continuous?
Solution. If $x \neq 0$, then $\sin (1 / x)$ is a composition of continuous function and thus $x^{2} \sin (1 / x)$ is a product of continuous function and hence continuous.

If $x=0$, we need to have that $\lim _{x \rightarrow 0} g(x)=g(0)=0$ in order for g to satisfy the definition of continuity. Recalling that $\sin (1 / x)$ oscilates between $-1 \leq x \leq 1$, we have that

$$
-x^{2} \leq g(x) \leq x^{2}
$$

and since $\lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0}-x^{2}=0$, the theorem below tells us we have $\lim _{x \rightarrow 0} g(x)=$ 0 .

Theorem 1 (The squeeze theorem) If f, g, and h are functions and for all x in an open interval containing c, but perhaps not at c, we have

$$
f(x) \leq g(x) \leq h(x)
$$

and

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L
$$

then

$$
\lim _{x \rightarrow c} g(x)=L
$$

We will not give a proof but it should be intuitive that if g is trapped between two functions that approach the limit L, then g also approaches that limit.

1.2 The limit of $\sin (x) / x$

We consider the limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}
$$

The quotient rule for limits does not apply since the limit of the denominator is 0 . Unlike our previous limits, we cannot simplify to obtain a function where we can use the direct substitution rule or another rule. Instead, we will use the squeeze theorem.

Theorem 2

$$
\lim _{t \rightarrow 0} \frac{\sin (t)}{t} .
$$

Proof. We start by observing that $\sin (-t) /(-t)=\sin (t) / t$, so it suffices to consider $\lim _{t \rightarrow 0^{+}} \sin (t) / t$.

In the figure below we draw an angle t with $0<t<\pi / 2$ and observe that we have the inequalities

Area triangle $O A B \leq$ Area sector $O A B \leq$ Area triangle $O A C$.

We have

$$
\begin{aligned}
\text { Area triangle } O A B & =\frac{1}{2} \sin (t) \\
\text { Area sector } O A B & =\frac{1}{2} t \\
\text { Area triangle } O A C & =\frac{1}{2} \tan (t)
\end{aligned}
$$

Thus we have

$$
\frac{1}{2} \sin (t) \leq t / 2 \leq \frac{1}{2} \tan (t)
$$

Since $t>0$, we can rearrange to obtain

$$
\begin{equation*}
\cos (t) \leq \frac{\sin (t)}{t} \leq 1 \tag{3}
\end{equation*}
$$

and since $\sin (-t) /(-t)=\sin (t) / t$, we also have (3) if $0<|t|<\pi / 2$. Since $\lim _{t \rightarrow 0} \cos (t)=$ 1 , the squeeze theorem implies

$$
\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1
$$

1.3 Some consequences

Using this limit, we can find several related limits.
The first one will be used in the next chapter.
Example. Find the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}
$$

Solution. We note that since the limit of the denominator is zero, we cannot use the quotient rule for limits. However, if we multiply and divide by $1+\cos (x)$ and use the identity $\sin ^{2}(x)+\cos ^{2}(x)=1$, we have

$$
\frac{1-\cos (x)}{x}=\frac{(1-\cos (x))(1+\cos (x))}{x(1+\cos (x))}=\frac{\sin ^{2}(x)}{x}
$$

Thus, we may use the rule for a limit of a product,

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x}=\lim _{x \rightarrow 0} \sin (x) \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=0 .
$$

Below are a few more to try

1. $\lim _{t \rightarrow 0} \frac{\sin (2 t)}{t}$
2. $\lim _{t \rightarrow 0} \frac{\sin (2 t)}{\sin (3 t)}$
3. $\lim _{t \rightarrow 0} \frac{1-\cos (t)}{t^{2}}$

February 2, 2014

