1 Lecture 13: The derivative as a function.

1.1 Outline

- Definition of the derivative as a function. definitions of differentiability.
- Power rule, derivative the exponential function
- Derivative of a sum and a multiple
- Differentiability implies continuity.
- Example: Finding a derivative.

1.2 The derivative

Definition. Given a function f, we may define a new function f', which we call the derivative of f by the rule that f'(x) is the derivative at x.

Recalling the definition of the derivative at a point, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

provided the limit exists. The domain of f' is exactly the set of points where f is differentiable.

We will sometimes use a different notation for the derivative, d/dx. The symbol f' and the Leibniz notation df/dx both denote the same function,

$$\frac{df}{dx} = f'.$$

The Leibniz notation is particular convenient for functions that are given by a formula but have no name. For example, in the last class we showed that

$$\frac{d}{dx}x^n = nx^{n-1}.$$

1.3 Some formulae

We have two important differentiation formulas:

$$\frac{d}{dx}x^n = nx^{n-1}, n = 1, 2, 3, \dots$$

and

$$\frac{d}{dx}e^x = e^x.$$

The first was proved in our previous lecture.

Computing the second derivative is more difficult. Let b^x be an exponential function to an arbitrary base, b > 0. From the properties of b^x , we have

$$\frac{b^{x+h} - b^x}{h} = \frac{b^x b^h - b^x}{h} = \frac{b^h - 1}{h} b^x.$$

It is true that the limit $\lim_{h\to 0} \frac{b^h-1}{h} = m(b)$ exists. We will assume this fact. The number e is special because it is the only number where this limit is 1,

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1. \tag{1}$$

The property (1) can be used to define e and helps to explain the special role of e in mathematics. Thus we have that the function e^x is its own derivative,

$$\frac{d}{dx}e^x = e^x.$$

1.4 Derivatives of sums

Theorem 1 If f and g are differentiable at x and c is a real number, then f + g and cf are differentiable at x and

$$(f+g)'(x) = f'(x) + g'(x)$$
 and $(cf)'(x) = cf'(x)$.

Proof. We consider the difference quotient for f + g and write as

$$\frac{(f+g)(y) - (f+g)(x)}{x - y} = \frac{f(y) - f(x)}{x - y} + \frac{g(y) - g(x)}{x - y}.$$

Since we know each of the difference quotients on the right has a limit, we may use the sum rule for limits

$$\lim_{y \to x} \frac{(f+g)(y) - (f+g)(x)}{x - y} = \lim_{y \to x} \frac{f(y) - f(x)}{x - y} + \lim_{y \to x} \frac{g(y) - g(x)}{x - y}.$$

Thus (f+g)'(x) = f'(x) + g'(x).

We omit the proof of the second one.

With these rules and the power rule, we can now find the derivative of every polynomial.

Example. Find the derivative of $f(x) = 3x^4 + 4x^3$.

Solution.
$$12(x^3 + x^2)$$
.

1.5 Differentiability and continuity.

Theorem 2 If f is differentiable at x, then f is continuous at x.

Proof. To show f is continuous at x, we will show that

$$\lim_{y \to x} (f(y) - f(x)) = 0.$$

We can use the product rule for limits and the differentiability of f to see that

$$\lim_{y \to x} (f(y) - f(x)) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} (y - x)) = f'(x) \cdot 0 = 0.$$

Example. Show that the function

$$f(x) = \begin{cases} x, & x < 1\\ 2, & x \ge 1 \end{cases}$$

is not differentiable at 1.

Solution. If the function where differentiable, it would be continuous at 1. Since it is not continuous at 1, it cannot be differentiable there.

1.6 Examples

Example. Let f(x) = 1/x. Find all values x where the slope of the tangent line at x is 4. Find all values x where the slope of the tangent line is -4.

Find all tangent lines to the graph of f which are parallel to the line y = -4x.

Solution. We may write $f(x) = 1/x = x^{-1}$ and find the derivative $f'(x) = -x^{-2}$. We see that f'(x) < 0 and thus there is no point where the tangent line has slope 4. To find points where the slope of the tangent line is -4, we need to solve $f'(x) = -1/x^2 = -4$. The solutions are $x = \pm 1/2$. Thus there are two tangent lines to the graph with slope -4. They are the line with slope -4 which pass through (1/2, 2) and the line with slope -4 with slope (-1/2, -2). The equations are

$$y-2 = -4(x-1/2)$$
 $y+2 = -4(x+1/2).$

Example. Can you find tangent lines to the graph $y = x^2$ which pass through (0, -1).

Solution. The general tangent line to the graph of f(x) at the point (a, f(a)) is y - f(a) = f'(a)(x - a). If the point (0, -1) is to lie on this line, we must have -1 - f(a) = f'(a)(0 - a). In the case of $f(x) = x^2$ and f'(x) = 2x, this becomes

$$-1 - a^2 = 2a(0 - a)$$
$$a^2 = 1$$
$$a = \pm 1$$

Thus the lines are tangent to the graph of $f(x) = x^2$ at the points (1,1) and (-1,1). The equation of line through (1,1) with slope 2 is y-1=2(x-1) or y=2x-1 and the line through (-1,1) with slope -2 is y-1=-2(x+1) or y=-2x-1. A sketch serves to check our answer.

Example. Sketch the graph of sin(x) and make a rough sketch of the graph of the derivative, sin'(x). Can you guess the derivative of sin?

Example. Find the derivative of $f(x) = \sqrt{x}$.

Solution. For $f(x) = \sqrt{x}$, we look at the difference quotient

$$\frac{f(y) - f(x)}{x - y} = \frac{\sqrt{y} - \sqrt{x}}{y - x}$$

$$= \frac{\sqrt{y} - \sqrt{x}}{y - x} \frac{\sqrt{y} + \sqrt{x}}{\sqrt{y} + \sqrt{x}}$$

$$= \frac{y - x}{y - x} \frac{1}{\sqrt{x} + \sqrt{y}} = \frac{1}{\sqrt{y} + \sqrt{x}}$$

As long as x > 0, we may use the direct substitution rule to take the limit of the last expression and find

$$f'(x) = \lim_{y \to x} \frac{1}{\sqrt{y} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

Since the limit exists for all x > 0, the derivative is $f'(x) = 1/(2\sqrt{x})$ with domain the interval $(0, \infty)$.

February 13, 2014