1 Lecture 13: The derivative as a function.

1.1 Outline

- Definition of the derivative as a function. definitions of differentiability.
- Power rule, derivative the exponential function
- Derivative of a sum and a multiple
- Differentiability implies continuity.
- Example: Finding a derivative.

1.2 The derivative

Definition. Given a function f, we may define a new function f^{\prime}, which we call the derivative of f by the rule that $f^{\prime}(x)$ is the derivative at x.

Recalling the definition of the derivative at a point, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a},
$$

provided the limit exists. The domain of f^{\prime} is exactly the set of points where f is differentiable.

We will sometimes use a different notation for the derivative, $d / d x$. The symbol f^{\prime} and the Leibniz notation $d f / d x$ both denote the same function,

$$
\frac{d f}{d x}=f^{\prime}
$$

The Leibniz notation is particular convenient for functions that are given by a formula but have no name. For example, in the last class we showed that

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

1.3 Some formulae

We have two important differentiation formulas:

$$
\frac{d}{d x} x^{n}=n x^{n-1}, n=1,2,3, \ldots
$$

and

$$
\frac{d}{d x} e^{x}=e^{x}
$$

The first was proved in our previous lecture.
Computing the second derivative is more difficult. Let b^{x} be an exponential function to an arbitrary base, $b>0$. From the properties of b^{x}, we have

$$
\frac{b^{x+h}-b^{x}}{h}=\frac{b^{x} b^{h}-b^{x}}{h}=\frac{b^{h}-1}{h} b^{x} .
$$

It is true that the $\operatorname{limit} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=m(b)$ exists. We will assume this fact. The number e is special because it is the only number where this limit is 1 ,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \tag{1}
\end{equation*}
$$

The property (1) can be used to define e and helps to explain the special role of e in mathematics. Thus we have that the function e^{x} is its own derivative,

$$
\frac{d}{d x} e^{x}=e^{x}
$$

1.4 Derivatives of sums

Theorem 1 If f and g are differentiable at x and c is a real number, then $f+g$ and cf are differentiable at x and

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) \quad \text { and } \quad(c f)^{\prime}(x)=c f^{\prime}(x)
$$

Proof. We consider the difference quotient for $f+g$ and write as

$$
\frac{(f+g)(y)-(f+g)(x)}{x-y}=\frac{f(y)-f(x)}{x-y}+\frac{g(y)-g(x)}{x-y} .
$$

Since we know each of the difference quotients on the right has a limit, we may use the sum rule for limits

$$
\lim _{y \rightarrow x} \frac{(f+g)(y)-(f+g)(x)}{x-y}=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{x-y}+\lim _{y \rightarrow x} \frac{g(y)-g(x)}{x-y} .
$$

Thus $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.
We omit the proof of the second one.
With these rules and the power rule, we can now find the derivative of every polynomial.

Example. Find the derivative of $f(x)=3 x^{4}+4 x^{3}$.
Solution. $12\left(x^{3}+x^{2}\right)$.

1.5 Differentiability and continuity.

Theorem 2 If f is differentiable at x, then f is continuous at x.
Proof. To show f is continuous at x, we will show that

$$
\lim _{y \rightarrow x}(f(y)-f(x))=0
$$

We can use the product rule for limits and the differentiability of f to see that

$$
\left.\lim _{y \rightarrow x}(f(y)-f(x))=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}(y-x)\right)=f^{\prime}(x) \cdot 0=0
$$

Example. Show that the function

$$
f(x)= \begin{cases}x, & x<1 \\ 2, & x \geq 1\end{cases}
$$

is not differentiable at 1 .
Solution. If the function where differentiable, it would be continuous at 1 . Since it is not continuous at 1 , it cannot be differentiable there.

1.6 Examples

Example. Let $f(x)=1 / x$. Find all values x where the slope of the tangent line at x is 4 . Find all values x where the slope of the tangent line is -4 .

Find all tangent lines to the graph of f which are parallel to the line $y=-4 x$.
Solution. We may write $f(x)=1 / x=x^{-1}$ and find the derivative $f^{\prime}(x)=-x^{-2}$. We see that $f^{\prime}(x)<0$ and thus there is no point where the tangent line has slope 4 . To find points where the slope of the tangent line is -4 , we need to solve $f^{\prime}(x)==$ $-1 / x^{2}=-4$. The solutions are $x= \pm 1 / 2$. Thus there are two tangent lines to the graph with slope -4 . They are the line with slope -4 which pass through $(1 / 2,2)$ and the line with slope -4 with slope $(-1 / 2,-2)$. The equations are

$$
y-2=-4(x-1 / 2) \quad y+2=-4(x+1 / 2)
$$

Example. Can you find tangent lines to the graph $y=x^{2}$ which pass through $(0,-1)$.

Solution. The general tangent line to the graph of $f(x)$ at the point $(a, f(a))$ is $y-f(a)=f^{\prime}(a)(x-a)$. If the point $(0,-1)$ is to lie on this line, we must have $-1-f(a)=f^{\prime}(a)(0-a)$. In the case of $f(x)=x^{2}$ and $f^{\prime}(x)=2 x$, this becomes

$$
\begin{aligned}
-1-a^{2} & =2 a(0-a) \\
a^{2} & =1 \\
a & = \pm 1
\end{aligned}
$$

Thus the lines are tangent to the graph of $f(x)=x^{2}$ at the points $(1,1)$ and $(-1,1)$. The equation of line through $(1,1)$ with slope 2 is $y-1=2(x-1)$ or $y=2 x-1$ and the line through $(-1,1)$ with slope -2 is $y-1=-2(x+1)$ or $y=-2 x-1$. A sketch serves to check our answer.

Example. Sketch the graph of $\sin (x)$ and make a rough sketch of the graph of the derivative, $\sin ^{\prime}(x)$. Can you guess the derivative of \sin ?
Example. Find the derivative of $f(x)=\sqrt{x}$.
Solution. For $f(x)=\sqrt{x}$, we look at the difference quotient

$$
\begin{aligned}
\frac{f(y)-f(x)}{x-y} & =\frac{\sqrt{y}-\sqrt{x}}{y-x} \\
& =\frac{\sqrt{y}-\sqrt{x}}{y-x} \frac{\sqrt{y}+\sqrt{x}}{\sqrt{y}+\sqrt{x}} \\
& =\frac{y-x}{y-x} \frac{1}{\sqrt{x}+\sqrt{y}}=\frac{1}{\sqrt{y}+\sqrt{x}}
\end{aligned}
$$

As long as $x>0$, we may use the direct substitution rule to take the limit of the last expression and find

$$
f^{\prime}(x)=\lim _{y \rightarrow x} \frac{1}{\sqrt{y}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
$$

Since the limit exists for all $x>0$, the derivative is $f^{\prime}(x)=1 /(2 \sqrt{x})$ with domain the interval $(0, \infty)$.

February 13, 2014

