1 Lecture 16: Higher derivatives

1.1 Outline

- Definition of higher-order derivatives
- Examples

1.2 Higher order derivatives

The acceleration is the derivative of the derivative of position. We call this a second derivative. We often write $f^{\prime \prime}$ for the derivative of f^{\prime} and we call $f^{\prime \prime}$ the second derivative. We can define derivatives of any order by

$$
f^{(0)}=f \quad \text { and } \quad f^{(n)}=f^{(n-1)^{\prime}}
$$

for the result of differentiating n-times. For derivatives up to order 2 or 3 , we add a prime (${ }^{\prime}$) for each derivative. But eventually we get tired of writing primes (and our readers get tired of counting) and we switch to one of the notations

$$
f^{(n)} \quad \text { or } \quad \frac{d^{n} f}{d x^{n}}
$$

Be careful to use the parentheses which help us to distinguish the n th-derivative $f^{(n)}$ from the nth power f^{n}.

1.3 Examples

Example. Find

$$
\frac{d^{2}}{d x^{2}} x^{2} e^{x}
$$

If f is defined by $f(x)=e^{x}$, find $f^{(2014)}$.
Solution. The first derivative

$$
\frac{d}{d x}\left(x^{2} e^{x}\right)=x^{2} e^{x}+2 x e^{x}=\left(x^{2}+2 x\right) e^{x}
$$

Differentiating again gives

$$
\frac{d}{d x}\left(x^{2}+2 x\right) e^{x}=(2 x+2) e^{x}+\left(x^{2}+2 x\right) e^{x}=\left(x^{2}+4 x+2\right) e^{x} .
$$

After spending all day computing 2014 derivatives, we find that $f^{(2014)}(x)=f^{(2011)}(x)=$ $\ldots=f(x)=e^{x}$.

Example. Can you find a formula for

$$
\frac{d^{n}}{d x^{n}} x^{n}, \quad \frac{d^{2 n}}{d x^{2 n}} x^{n} \quad \frac{d^{n}}{d x^{n}} \frac{1}{x} ?
$$

Solution. Try a few examples and look for a pattern.
Example. Find a polynomial $p(x)$ of degree 2 so that with $f(x)=e^{x}, p(0)=f(0)$, $p^{\prime}(0)=f^{\prime}(0)$, and $p^{\prime \prime}(0)=f^{\prime \prime}(0)$.

Compare the values of e^{x} and $p(x)$.
Can you suggest a better way to approximate e^{x} ?
Solution. Since $f^{(k)}(x)=e^{x}$ for all k, we have $f^{(k)}(0)=1$ for all $k=0,1,2, \ldots$ If $p(x)=a x^{2}+b x+c$, then we have

$$
p(0)=c, \quad p^{\prime}(0)=b \quad p^{\prime \prime}(0)=2 a
$$

Since we want $p(0)=f(0)=1$, we have $c=1$. If $p^{\prime}(0)=1$, then we must have $b=1$ and if $p^{\prime \prime}(0)=1$, we must have $2 a=1$ or $a=1 / 2$. Thus $p(x)=\frac{1}{2} x^{2}+x+1$.

Trying a few values we find

x	e^{x}	$p(x)$
0	1	1
0.01	$1.010050167 \ldots$	1.01005
0.2	$1.22140 \ldots$	1.22
-0.2	$0.81873 \ldots$	0.82

The graph below also indicates that the polynomial is a good approximation to the function near 0 .

To do better we might look for a third degree polynomial with $p^{(k)}(0)=f^{(k)}(0)$ for $k=0,1,2,3$.

Example. Find the nth derivative of $x e^{x}$. Hint: Try a few and see if you can guess a pattern.

February 20, 2014

