
1 Lecture 19: Inverse functions, the derivative of

ln(x).

1.1 Outline

• The derivative of an inverse function

• The derivative of ln(x).

• Derivatives of inverse trigonometric functions

1.2 The graph of inverse function
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Figure 1: The tangent line to a function and its inverse

We consider the graph of a function f and let (a, f(a)) = (a, b) be a point on
the graph. We recall that if we graph a function f which is one-to-one, we may find
the graph of the inverse function by interchanging the x and y coordinates. Another
name for interchanging the x and y coordinates is to reflect in the line y = x. Thus
(b, a) = (b, f−1(b)) will be a point on the graph of f−1. We may find the tangent line to
the graph at f−1 at (b, f−1(b)), by reflecting the tangent line at (a, f(a)) = (f−1(b), b).
This interchanges the rise and the run and the reflected line has slope is 1/m. See
Figure 1. Thus, we may find the derivative of the inverse function in terms of the



derivative of f as

(f−1)′(b) =
1

f ′(f−1(b))
. (1)

This will hold provide f is one-to-one, differentiable at f−1(b) and f ′(f−1(b)) is not
zero. The formula for the derivative of an inverse function (1) may seem rather
complicated, but it helps to remember that the tangent line to the graph of f−1 at a
point (b, f−1(b)) corresponds to the tangent line of the graph of f at (f−1(b), b). We
will see that the formula is easy to use to find find derivatives of the logarithm and
inverse trig functions.

Example. The function f is one-to-one and differentiable. The tangent line to the
graph of y = f(x) at x = 2 is y = 3x + 2. Find the tangent line to the graph of f−1

at x = 8.

Solution. Since y = 3x+2 is the tangent line to the graph of f , it passes through the
point (2, f(2)) and has slope f ′(2). Thus, we have f(2) = 3 · 2 + 2 = 8 and f ′(2) = 3.
Since f(2) = 8, we know f−1(8) = 2 and from (1), we have that

(f−1)′(8) =
1

f ′(2)
=

1

3
.

Thus the tangent line to the graph of f−1 at 8 is y− 2 = 1
3
(x− 8) which simplifies to

y =
1

3
x− 2

3
.

1.3 Some useful derivatives

We recall that the natural logarithm, ln(x) is defined as the inverse of the exponential
function ex. If we use (1) with f(x) = ex and f−1(x) = ln(x), we obtain

d

dx
ln(x) =

1

eln(x)
=

1

x
.

Where we have used that eln(x) = x and d
dx
ex = ex.

Example. Find the derivative of

f(x) = x ln(x)− x.



The function n
√
x = x1/n is the inverse of the function f(x) = xn where if n is

even we must restrict the domain of f to be the set {x : x ≥ 0}. If n is odd, then f
is one-to-one on the whole real line.

Example. Use the rule for the derivative of the inverse function to find the derivative
of g(x) = x1/n.

Solution. We let f(x) = xn. Then f ′(x) = nxn−1. Using (1), we have

g′(x) =
1

f ′(g(x))
=

1

n(x1/n)n−1
=

1

n
x

1
n
−1.

At least when x 6= 0 so that f ′(x) 6= 0. Since the domain of g is x ≥ 0 when n is
even, we can only expect to find the derivative for n

√
x when x > 0 for n even. To

summarize, we have

d

dx
x1/n =

{
1
n
x

1
n
−1, x 6= 0 and n odd

1
n
x

1
n
−1, x > 0 and n even

This gives the power rule for all exponents of the form 1/n.

Exercise. Use the previous result and the chain rule to verify the power rule for
rational exponents. That is find

d

dx
xm/n =

d

dx
(x1/n)m.

We have now proven the power rule for all rational exponents. The rule is true
and we may use the rule for any real exponent. However, the proof for the general
case is very different. The next problem shows how to find the derivative of xr using
the properties of the logarithm and the exponential function. The exercise also gives
some practice with the chain rule.

Exercise. To prove the power rule for real exponents, we may argue as follows. If
y = xr, then we have ln(y) = ln(xr) = r ln(x). Thus we have y = eln(y) = er ln(x). This
provides a careful definition of xr for any real number. Use the chain rule to find

d

dx
er ln(x), x > 0.



1.4 Inverse trigonometric functions

Finally, we find the derivatives of the inverse trigonometric functions. For these
functions, we will need to use trigonometric identities to simplify the result of (1).

We begin by finding the derivative of sin−1(x). This function is often written as
arcsin, but we will not use this notation in this course. Please remember that sin−1 is
in the inverse function. The reciprocal or multiplicative inverse is 1/ sin(x) = csc(x).

If f(x) = sin(x) and f−1(x) = sin−1(x), then using our formula for the inverse
function (1) we have

d

dx
sin−1(x) =

1

cos(sin−1(x))
.

We have a problem that we need to simplify cos(sin−1(x)). We recall that the range
of sin−1 is the interval [−π/2, π/2] and that cos(θ) ≥ 0 for θ ∈ [−π/2, π/2]. If we
solve the identity sin2(θ) + cos2(θ) = 1 for cos(θ) and use that cos(θ) ≥ 0, we obtain
that

cos(sin−1(x) =
√

1− sin2(sin−1(x)) =
√

1− x2.
Using this we obtain that

d

dx
sin−1(x) =

1√
1− x2

, −1 < x < 1. (2)

We cannot use (1) when x = ±1 since the denominator is zero and in fact sin−1 is
not differentiable for x = ±1.

A second approach to the simplification is to draw a right triangle with angle
θ = sin−1(x), opposite side x and hypotenuse 1. Then Pythagoras’s theorem gives us
that cos(θ) =

√
1− x2.

 1−x
2

θ

x
1

Example. Use (1) to find the derivative of tan−1(x).

Solution. We will need the identity

1 + tan2(x) = sec2(x). (3)

This may be established by dividing both sides of the identity sin2(x) + cos2(x) = 1
by cos2(x).



Since the derivative of tan(x) is sec(x), we have from (1) that

d

dx
tan−1(x) =

1

sec2(tan−1(x))
.

We use the identity (3) to simplify the denominator sec2(tan−1(x)) = 1+sec2(tan−1(x)) =
1 + x2 and find that

d

dx
tan−1(x) =

1

1 + x2
.

Exercise. Find the derivatives of the remaining inverse trigonometric functions,

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

d

dx
cos−1(x) =

−1√
1− x2

.

d

dx
cot−1(x) =

−1

1 + x2
d

dx
csc−1(x) =

−1

|x|
√
x2 − 1

Of these, we will only need to remember the derivative of sec−1(x).

Example. Find the derivative of sin−1(1/x) and show that

d

dx
sin−1(1/x) =

d

dx
csc−1(x).

Why is this?

Solution. Since csc(θ) = 1/ sin(θ), if x = csc(θ), then 1/x = sin(θ) which implies that
sin−1(1/x) = csc−1(x). Thus the derivatives are equal. To compute the derivative,
we use the chain rule

d

dx
sin−1(1/x) =

−1

x2
1√

1− (1/x)2
=
−1

x2
1√

1/x2
√
x2 − 1

=
−1

|x|
√
x2 − 1

.

Example. Suppose that one leg of a right triangle is fixed at 10 meters and the other
leg is decreasing at a rate of 0.7 meters/second. Find the rate of change of the angle
opposite the fixed leg when the length of the varying leg is 20 meters.



Solution. We let x(t) be a function of time which gives length of the varying leg of
the triangle and sketch the triangle.

10 m

θ

x

dx/dt = −0.7 m/s

We may write θ = tan−1(10/x(t)) and use the chain rule to find

dθ

dt
=

d

dt
tan−1(10/x(t)) =

−10x′(t)

x(t)2
1

1 + (10/x(t))2
=
−10x′(t)

x(t)2 + 102
.

Simplifying and substituting the given values gives

dθ

dt
=

7

202 + 102
= 7/500 radians/second.

Can you explain the units for the answer?
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