1 Lecture 38: The fundamental theorems of calculus.

- The second part of the fundamental theorem of calculus.
- Differentiating integrals.
- Recovering a function from its rate of change.

1.1 Differentiating integrals.

Theorem 1 (FTC II) Assume f is continuous on an open interval I and a is in I. Then the area function

$$
A(x)=\int_{a}^{x} f(t) d t
$$

is an anti-derivative of f and thus $A^{\prime}=f$.
The most of important consequence of FTC II is that any continuous function has an anti-derivative. We will also work exercises where we apply FTC II to differentiate functions defined by integrals.
Proof. Write

$$
\frac{A(x+h)-A(x)}{h}=\frac{1}{h} \int_{x}^{x+h} f(t) d t .
$$

We will show

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)
$$

The reader should write out a similar argument for the limit from the left.
If f is continuous, then f has maximum and minimum values M_{h} and m_{h} on the interval $[x, x+h]$. Using the order property of the integral,

$$
m_{h} \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq M_{h} .
$$

As h tends to 0 , we have $\lim _{h \rightarrow 0^{+}} M_{h}=\lim _{h \rightarrow 0^{+}} m_{h}=f(x)$ since f is continuous. It follows that

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)
$$

Example. Find
a) $\frac{d}{d x} \int_{0}^{x} \sin \left(t^{2}\right) d t$
b) $L^{\prime}(x)$ if $L(x)=\int_{1}^{x} \frac{1}{t} d t$
c) $\frac{d}{d x} \int_{x^{2}}^{x} \sin \left(t^{2}\right) d t$

Is the function $L(x)=\int_{1}^{x} \frac{1}{t} d t$ increasing or decreasing? Is the graph of L concave up or concave down?

Solution. Part a) is a straightforward application of the second part of the fundamental theorem. The function $\sin \left(x^{2}\right)$ is continuous everywhere and thus we have

$$
\frac{d}{d x} \int_{0}^{x} \sin \left(t^{2}\right) d t=\sin \left(x^{2}\right)
$$

Part b) is also straightforward,

$$
\frac{d}{d x} \int_{1}^{x} \frac{1}{t} d t=\frac{1}{x}, \quad x>0 .
$$

Taking another derivative, we find that

$$
\frac{d^{2}}{d x^{2}} \int_{1}^{x} \frac{1}{t} d t=-1 / x^{2}
$$

Thus this function is concave down for $x>0$.
A second approach is to use FTC I to see that $\int_{1}^{x} \frac{1}{t} d t=\ln (x)-\ln (1)$ and then apply the differentiation rules to compute the derivative. Note that we could not use this approach in the first example since we do not know an anti-derivative for $\sin \left(x^{2}\right)$.

Finally, part c) requires us to use the properties of the integral to put it in a form where we can use FTC II. We can write

$$
\int_{x^{2}}^{x} \sin \left(t^{2}\right) d t=\int_{x^{2}}^{0} \sin \left(t^{2}\right) d t+\int_{0}^{x} \sin \left(t^{2}\right) d t=-\int_{0}^{x^{2}} \sin \left(t^{2}\right) d t+\int_{0}^{x} \sin \left(t^{2}\right) d t
$$

Now applying FTC II and using the chain rule for the first integral gives

$$
\frac{d}{d x}\left(-\int_{0}^{x^{2}} \sin \left(t^{2}\right) d t+\int_{0}^{x} \sin \left(t^{2}\right) d t\right)=-2 x \sin \left(x^{4}\right)+\sin \left(x^{2}\right)
$$

Our second example shows that it is necessary to assume that f is continuous in FTC II.

Example. Let f be the function given by

$$
f(x)= \begin{cases}0, & x<2 \\ 1, & x \geq 2\end{cases}
$$

Find $F(x)=\int_{0}^{x} f(x) d x$ and determine where F is differentiable.
Solution. We have that the integral is given by

$$
F(x)= \begin{cases}0, & x<2 \\ (x-2), & x \geq 0\end{cases}
$$

It is pretty clear that F is differentiable everywhere except at 2 . At 2 , we can compute the left and right limits of the difference quotient and find

$$
\lim _{h \rightarrow 0^{-}} \frac{F(2+h)-F(2)}{h}=0 \quad \lim _{h \rightarrow 0^{+}} \frac{F(2+h)-F(2)}{h}=1 .
$$

Thus $F^{\prime}(2)$ does not exist.
The graph of F below confirms this.

1.2 The net change theorem

Since F is always an anti-derivative of F^{\prime}, one consequence of part I of the fundamental theorem of calculus is that if F^{\prime} is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a) .
$$

This is really FTC I again, but is called the net change theorem in the text. Thus the integral is a tool that helps recover the net change of a function from the rate of change. Another formulation is that if we know the initial value of f at a and the rate of change over the interval $[a, b]$, then we can find $f(b)$. This idea has many applications.

Example. An object falls with constant acceleration $-g$, at $t=1$ its height is h_{1} and its velocity is v_{1}. Find its position at all times.

Solution. By the net change theorem,

$$
v(t)-v(1)=\int_{1}^{t} g d s=-g \cdot t+g=-g \cdot(t-1) .
$$

Thus $v(t)=-g \cdot(t-1)+v_{1}$. Applying the net change theorem again we have the height at time time $t, h(t)$ is

$$
h(t)-h(1)=\int_{1}^{t}-g \cdot(s-1)+v_{1} d s=\left.\left(-\frac{1}{2} g \cdot s^{2}+g \cdot s+v_{1} \cdot s\right)\right|_{s=1} ^{t}
$$

$$
\begin{aligned}
& =-\frac{1}{2} g t^{2}+g t+v_{1} t+\frac{1}{2} g-g-v_{1} \\
& =-\frac{1}{2} g \cdot\left(t^{2}-2 t+1\right)+v_{1} \cdot(t-1) \\
& =-\frac{1}{2} g \cdot(t-1)^{2}+v_{1} \cdot(t-1) .
\end{aligned}
$$

Thus

$$
h(t)=\frac{1}{2} g \cdot(t-1)^{2}+v_{1} \cdot(t-1)+h_{1} .
$$

Note this gives a different version of the equations for a falling object from Chapter 3.

Example. Suppose that a particle moves so that its velocity at time t is $v(t)=\sin (t)$.
Find the change in position in the interval $[0,2 \pi]$. Find the total distance traveled in the interval $[0,2 \pi]$.

Solution. The key conceptual point is to observe that the particle changes direction during the interval $[0,2 \pi]$, thus we expect that the total distance travelled will be greater than the change in displacement.

To do the calculations, we first compute the change in displacement by FTC I/the Net Change Theorem $p(2 \pi)-p(0)=\int_{0}^{2 \pi} v(t) d t$. In this problem, we have $v(t)=\sin (t)$ and thus the change in position is

$$
\int_{0}^{2 \pi} \sin (t) d t=-\left.\cos (t)\right|_{0} ^{2 \pi}=0
$$

To find the distance travelled, we need to compute the areas above and below the t axis and add, rather than subtract, them to get the total distance travelled. Since the velocity $v(t)=\sin (t)$ is positive on the interval $[0, \pi]$ and negative on the interval [$\pi, 2 \pi]$, we have that the total distance travelled is

$$
\int_{0}^{\pi} \sin (t) d t-\int_{\pi}^{2 \pi} \sin (t) d t=-\left.\cos (t)\right|_{t=0} ^{\pi}+\left.\cos (t)\right|_{t=\pi} ^{2 \pi}=4
$$

To give a less familiar example, suppose we have a rope whose thickness varies along its length. Fix one end of the rope to measure from and let $m(x)$ denote the mass in kilograms of the rope from 0 to x meters along the rope. If we take the derivative, $\frac{d m}{d x}=\lim _{h \rightarrow 0}(m(x+h)-m(x)) / h$, then this represents mass per unit length (or linear density) of the rope near x and the units are kilograms/meter. If we integrate this linear density and observe that $m(0)=0$, then we recover the mass

$$
m(x)=\int_{0}^{x} \frac{d m}{d x} d x
$$

This is another example of the net change theorem.
April 20, 2014

