1 Lecture 20: Sequences

1. Find limits of sequences using sum, product, and squeeze theorem.
2. Use the convergence of monotone sequences to find limits of recursively defined sequences.

Sequence

A sequence is a list of real numbers $\left\{a_{1}, a_{2}, \ldots\right\}$. (More formally, we might define a sequence as a function whose domain is the natural numbers $1,2,3, \ldots$ and whose range is the real numbers. However, we always write a_{n} rather than use our standard notation for functions $a(n)$).

We say that a sequence $\left\{a_{n}\right\}$ converges to L if for each $\epsilon>0$, there is an N so that if $n>N$, then $\left|a_{n}-L\right|<\epsilon$. We write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

If the limit of a sequence exists and is finite, the sequence is a convergent sequence. Else, it is divergent.

If one recalls the definition of limits at infinity, then it is reasonable to expect that there is a connection between limits at infinity and limits of sequence. The connection is:

Proposition 1 If f is a function with

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

and $a_{n}=f(n)$, then

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Example. If $a_{n}=\left(n^{2}+1\right) /\left(2 n^{2}-1\right)$, find $\lim _{n \rightarrow \infty} a_{n}$.

Solution. We already understand the limit of $\left(x^{2}+1\right) /\left(2 x^{2}-1\right)$.
Example. Can you find a function where

$$
\lim _{n \rightarrow \infty} f(n) \text { exists } \quad \lim _{x \rightarrow \infty} f(x) \text { does not exist. }
$$

Solution. $\quad f(x)=\sin x$.

Sum, product and squeeze theorems.

As with limits of functions, we have the following rules about limits.
Theorem 1 If we have two convergent sequences $\left\{a_{n}\right\}$ with $\lim _{n \rightarrow \infty} a_{n}=L$ and $\left\{b_{n}\right\}$ with $\lim _{n \rightarrow \infty} b_{n}=M$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}+b_{n} & =L+M \\
\lim _{n \rightarrow \infty} a_{n} b_{n} & =L M
\end{aligned}
$$

If in addition, c is a real number, then

$$
\lim _{n \rightarrow \infty} c a_{n}=c L
$$

If, in addition, $M \neq 0$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M} .
$$

Also, we have a squeeze theorem for sequences.
Theorem 2 If $a_{n} \leq b_{n} \leq c_{n}$ and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L
$$

then the sequence b_{n} is convergent and

$$
\lim _{n \rightarrow \infty} b_{n}=L
$$

Example. Find the limits of the following sequences:

$$
a_{n}=\cos (n \pi), b_{n}=\frac{2 n+1}{\sqrt{n^{2}+1}}, c_{n}=n^{1} 00 / e^{n}, d_{n}=\frac{\cos n}{n} .
$$

Monotone sequences

This section states an important theoretical result that gives us conditions when a sequence will converge. We will see that this can be useful because there are sequences where we can use convergence to help us compute the limit.

Some definitions: A sequence $\left\{a_{n}\right\}$ is monotone increasing if we have

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots .
$$

A sequence is monotone decreasing if....
A sequence is monotone if it is monotone increasing or monotone decreasing.
Example.

$$
1 / n,-1 / n^{2},(-1)^{n} / n^{2} .
$$

A sequence $\left\{a_{n}\right\}$ is bounded below if there is a number M so that

$$
a_{n} \geq M, \quad \text { for all } n
$$

Exercise. Complete the following definition. A sequence is bounded above if
A sequence is bounded if it is bounded above or below.
Example. $1 / n, n$.
Theorem 3 If a sequence is bounded and monotone, then it is convergent.
-Draw picture.
Example. $\quad r^{n}, 0<r<1$
Example. Define $a_{1}=1$ and $a_{n}=3 /\left(5-a_{n}\right)$. Show the sequence is convergent and find its limit.

Solution. 1. Try a few examples. $1,3 / 4, .235294 \ldots$
2. Prove by induction that $0<a_{n} \leq 1$.
3. Prove by induction that $a_{n+1}<a_{n}$.
4. We know $\alpha=\lim a_{n}$ exists. The limit, α satisfies

$$
\alpha=3 /(5-\alpha) .
$$

Solving this equation gives

$$
\alpha=\frac{5 \pm \sqrt{1} 3}{2} .
$$

Since $0<\alpha<1$, then $\alpha=\frac{1}{2}(5-\sqrt{13})$.
March 11, 2004

