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Let 
 � R

2

be a bounded domain with Lipschitz boundary and let  :


 ! R be a function which is measurable and bounded away from zero and

in�nity. We consider the divergence form elliptic operator

L



= divr:

It is well-known that for such a operator, we may solve the Dirichlet problem

8

<

:

L



u = 0; in 


u = f; on @


for all f in the Sobolev space H

1=2

(@
). The resulting solution lies in the

Sobolev space H

1

(
). Using this solution, we de�ne the Dirichlet to Neumann

map �



: H

1=2

(@
)! H

�1=2

(@
) by

�



f = 

@u

@�

:

1



Here,

@u

@�

is the normal derivative of u at the boundary. In general, the expres-

sion 

@u

@�

exists as an element of H

�1=2

(@
) de�ned by

h

@u

@�

;	i =

Z




ru � r	

when 	 is in H

1

(
).

In this work, we establish the following uniqueness result (see Corollary

5.3): If 

1

and 

2

are two conductivities with r

i

in L

p

(
), p > 2, and

�



1

= �



2

, then 

1

= 

2

. The main interest of this result is the weakened

regularity hypothesis on the 

i

. Uniqueness in the inverse conductivity prob-

lem for smooth conductivities was established in 1987 by G. Uhlmann and J.

Sylvester [18]. This result was extended to conductivities with two derivatives

by a number of authors, see [10, 12], for example. S. Chanillo has studied a

related problem for Schr�odinger equations [6] with nonsmooth potential. In

addition, Nachman's work [10] and work of R.G. Novikov [13] give a method for

reconstructing the conductivity (or the potential in an equivalent problem for

Schr�odinger operators) using

�

@-techniques and integral equations. Recently,

R. Brown showed that Sylvester and Uhlmann's methods could be extended

to conductivities which are C

3=2+�

[5]. C. Tolmasky studies more general prob-

lems using methods of pseudo-di�erential operators with nonsmooth symbols

[19]. All of these results are in dimensions 3 and higher. In two dimensions,

A. Nachman [11] was able to prove uniqueness for conductivities with two

derivatives using the

�

@-method. The hypotheses in the above results (and the

result of this paper) imply, via Sobolev embedding, that the conductivity is

continuous. It is interesting to note that the only uniqueness results available

for conductivities which are discontinuous are due to Kohn and Vogelius [9]

who study conductivities which are piecewise analytic and V. Isakov [8] who

considers a class of conductivities which are piecewise C

2

.

The proof given here parallels Nachman's two-dimensional result in that we

use the

�

@-method. However, rather than studying a second order Schr�odinger

equation, we follow work of Beals and Coifman [2, 3] and others who study

scattering for a �rst order system

��

�

@ 0

0 @

�

�

�

0 q

�q 0

���

v

1

v

2

�

= 0:

The new ingredient that allows us to establish uniqueness under less regularity

is a sharper version of Liouville's theorem for pseudo-analytic functions (see

2



Corollary 3.11) and the observation of Beals and Coifman [3] that the scatter-

ing data (see part iv) of Theorem A below) lies in L

2

(R

2

). Using these ingre-

dients and a technical estimate for the scattering solutions due to L. Sung [15],

we prove uniqueness for the special solutions which easily gives the uniqueness

result for the inverse problem. We note that for smoother conductivities, Beals

and Coifman's results lead, via the arguments presented below, to uniqueness

in the two-dimensional inverse conductivity problem without this sharper ver-

sion of the Liouville theorem.

1 A �rst order system.

In this section, we introduce a �rst order system which is related to the con-

ductivity equation L



u = 0. The scattering theory for this �rst-order system

has been developed in Beals and Coifman [3]. We recall the notation and ideas

of this paper. A more detailed analysis of the scattering theory for this system

was given by L. Sung [15, 16, 17] with the intention of studying the Davey-

Stewartson II system. Sung and Beals and Coifman study slightly di�erent,

but equivalent, formulations of this system. We will use Beals and Coifman's

formulation and notation.

For this section, we suppose that we have an elliptic operator divr where

the coe�cient  satis�es r 2 L

2

loc

(R

2

) and for some � > 0 we have � <  <

�

�1

a.e. in R

2

. Additional hypotheses will be imposed in later sections. Note

that we assume that  is de�ned in all of R

2

. In section 4 we will explain how

we pass from  de�ned in 
 to  de�ned in all of R

2

. We recall the standard

notation for complex derivatives:

�

@ =

1

2

(

@

@x

1

+ i

@

@x

2

) and @ =

1

2

(

@

@x

1

� i

@

@x

2

):

We let q = �

1

2

@ log  and de�ne a matrix potential Q by

Q =

�

0 q

�q 0

�

:

We let D be the operator

D =

�

�

@ 0

0 @

�

and observe that if u satis�es the equation

divru = 0;

3



then a calculation shows that

�

v

w

�

= 

1=2

�

@u

�

@u

�

satis�es the system

D

�

v

w

�

�Q

�

v

w

�

= 0:

We let

J =

1

2

�

�i 0

0 i

�

and for a 2� 2 matrix A, we let

A

o�

=

�

0 a

12

a

21

0

�

and A

d

=

�

a

11

0

0 a

22

�

be the o�-diagonal and diagonal parts of the matrix. We de�ne

JA = [J;A]

= 2JA

o�

= �2A

o�

J

where [ , ] denotes the commutator. For z and k inR

2

(though we use complex

numbers to denote points in R

2

), we let

�(z; k) = �

k

(z)

=

 

exp(iz

�

k + i�zk) 0

0 exp(�izk � i�z

�

k)

!

and then we de�ne a map on 2� 2 matrix valued functions A = A(z) by

E

k

A = A

d

+ �

�1

k

A

o�

= A

d

+ A

o�

�

�

k

:

We observe that the free system D = 0 has a family of solutions

�

e

izk

0

0 e

�i�zk

�

depending on the complex parameter k. As in [3], we look for special solutions

of the system

(D �Q) = 0 (1.1)

4



of the form

m(z; k)

�

e

izk

0

0 e

�i�zk

�

(1.2)

where m is a matrix valued function of z and k and m(z; k) goes to 1 as z !1

in a sense to be made precise. Here and below, we use 1 to denote the 2 � 2

identity matrix. We observe that  satis�es the equation (1.1) if and only if

m satis�es

D

k

m�Qm = 0 (1.3)

where D

k

is the operator

D

k

A = E

�1

k

DE

k

A

= DA+ kJA:

We �x the inverse of D as

D

�1

f(z) =

1

�

Z

R

2

�

z � � 0

0 �z �

�

�

�

�1

f(�) d�(�)

where d� is Lebesgue measure on R

2

and then we look for solutions of (1.3)

by studying the integral equation

m�D

�1

k

Qm = 1 (1.4)

where D

�1

k

= E

�1

k

DE

k

.

2 Construction of solutions and the

�

@ equa-

tion.

In this section, we review the scattering theory for the system (1.1). Most of

these facts are well-known, though perhaps not quite in the form stated here.

Thus, we state the results we need and give a sketch of the proof and references

to earlier work. The main ideas here are in work of Beals and Coifman [3]. We

follow their argument and add a few analytical details borrowed from Nachman

[11]. A detailed analysis along the same lines has been given by L. Sung for

potentials in L

1

\ L

1

and much of his argument extends to potentials in

L

p

c

. Here and below, we use L

p

c

to denote the subspace of L

p

which consists

of functions which are compactly supported. We say that Q

j

! Q in L

p

c

5



if kQ

j

� Qk

L

p

goes to zero and the sequence Q

j

is supported in a �xed ball,

independent of j. We will also use the space L

p

�

which is the space of functions

f for which the norm kfk

L

p

�

= k(1 + j � j

2

)

�=2

fk

L

p

is �nite.

Throughout this paper, we assume that the potential Q satis�es Q

d

= 0.

Additional hypotheses will be stated explicitly in each result. Typically, we

will require that Q be Hermitian and that Q 2 L

p

c

. Our �rst result gives the

existence of solutions to (1.4), the

�

@-equation satis�ed by these solutions and

a few miscellaneous facts which will be useful.

Theorem A Suppose that Q 2 L

p

c

for some p > 2 and that Q

�

= Q. Choose

r so that 1=r + 1=p > 1=2 and then � so that �r > 2.

i) Then we may construct m as

(I �D

�1

k

Q)

�1

(1)

where the inverse is taken on the space L

r

��

.

ii) The map k ! m(�; k) is continuous into L

r

��

and for each k �xed, the

map Q! m(�; k) is continuous from L

p

c

into L

r

��

.

iii) For each k, the equation (1.3) has a unique solution subject to the

condition that m(�; k)� 1 is in L

q

for some q, 2 < q <1.

iv) The map k ! m(�; k) is di�erentiable (as a map into L

r

��

) and the

derivative satis�es

@

@

�

k

m(z; k)�m(z;

�

k)�

k

(z)S(k) = 0:

where the scattering data S is de�ned by

S(k) = �

1

�

J

Z

R

2

E

k

(Q(z)m(z; k)) d�(z): (2.1)

Sketch of Proof. We �rst note that our choice of r and � guarantees that

L

1

� L

r

��

. Next, we note that we have kD

�1

k

fk

L

1

� C(q)(kfk

L

q

+ kfk

L

q

0

)

for any q 6= 2. Using this, our condition on r and the assumption that Q has

compact support gives that

kD

�1

k

Qfk

L

r

��

� CkQk

L

p

kfk

L

r

��

(2.2)

where the constant depends on p, r, �� and the diameter of the support of

Q. Furthermore, one can show that the map f ! D

�1

k

Qf is compact (see [11,

6



Lemma 4.2] for a similar result). If m(z) 2 L

r

��

satis�es the integral equation

m�D

�1

k

Qm = 0, then it is clear that in fact m lies in all L

p

spaces for p > 2

and C

0

. Thus one may use the Liouville theorem for pseudo-analytic functions

as in [3, p. 22] to show that m = 0. (See also Corollary 3.8 below or Sung's

work [15].) Since I � D

�1

k

Q has trivial kernel, the Fredholm theory implies

that for each k, the operator I �D

�1

k

Q is invertible. This argument also gives

the uniqueness statement in part iii). The continuity of the map Q ! m in

part ii) follows from the observation (2.2) that Q! D

�1

k

Q is continuous into

the operators on L

r

��

in the operator norm. The continuity of the map k ! m

follows from the di�erentiability asserted in iv).

To establish the di�erentiability, we may argue as in [11, Lemma 2.2] to

show that k ! D

�1

k

Qf is a di�erentiable function taking values in L

r

��

when

f is in L

r

��

. Computing the derivative of this map by di�erentiating under the

integral and then using the quotient rule gives that

@

@

�

k

m(z; k) = �

1

�

(I �D

�1

k

Q)

�1

�

�

k

(z)J

Z

R

2

E

k

Q(I �D

�1

k

Q)

�1

(1) d�

�

= (I �D

�1

k

Q)

�1

(�

k

(z)S(k)):

Now as in [3], one may compute that D

k

(AE

�1

k

S) = (D

�

k

A)E

�1

k

S and then

that (I �D

�1

k

Q)

�1

(�

k

S) = ((I �D

�1

�

k

Q)(1))�

k

S(k), which gives the equation

of part iv).

Theorem B If Q 2 L

p

c

, for some p > 2, and Q = Q

�

, then

Z

trSS

�

�

Z

trQQ

�

:

We also note that in [16, Corollary 4.20], Sung gives the conclusion of

Theorem B above with an equality instead of an inequality when the potential

in L

1

\ L

1

. The proof of this result depends on the ideas used in Sung's

Proposition 2.23 of [15], as corrected below.

Proof. For Q with entries in the Schwartz class, it is known [3, 16] that

Z

trSS

�

=

Z

trQQ

�

where tr denotes the trace of a matrix. We observe that from the observation

ii) in Theorem A and the de�nition of S it is clear that if Q

j

! Q in L

p

c

,

7



then the scattering data for Q

j

converges pointwise to the scattering data for

Q. Thus, if we approximate a general potential by a sequence of smooth,

compactly supported potentials, then Fatou's lemma and the equality above

give that the scattering data for a general potential in L

p

c

satis�es the estimate

of this theorem.

Note that Theorem A does not give any estimate for the growth of m,

beyond the observation that km(�; k)k

L

r

��

is locally bounded in k. Our next

theorem gives such an estimate. At the same time, we show that m(z; �) is in

L

q

for some �nite q. This technical result will be important in our uniqueness

proof for the inverse problem. The estimate of Theorem 2.3 is a straightforward

generalization of Sung's [15, Proposition 2.23]. However, there is an error in

the proof of Sung's Proposition 2.23. L. Sung was kind enough to provide us

with a correction. The main step of his correction, Lemma C, is presented

below. This lemma, which is also valid for potentials in L

1

\L

1

, may be used

to solve the integral equation (2.52) in [15]. We make a similar use of this

lemma in proving Theorem 2.3 below. We thank Sung for allowing us to use

his correction and for several useful communications.

Theorem 2.3 Suppose Q

�

= Q and Q 2 L

p

c

for some p > 2, then for all

q > 2p=(p� 2),

sup

z

km(z; �)� 1k

L

q

� C

where the constant C depends on p, q and Q.

The main step in the proof of this theorem, is the following lemma. In this

lemma and below, we use L

p

z

(L

q

k

) to denote mixed L

p

spaces.

Lemma C [L. Sung] Given Q 2 L

p

c

, for some p > 2, there is an R = R(Q)

so that the map

m! D

�1

QD

�1

k

Qm

is a contraction on the diagonal matrix valued functions in L

1

z

(L

q

k

(fk : jkj >

Rg)), 1 � q � 1.

Proof of Theorem 2.3. Note that if we set ` = m

d

� 1, then ` satis�es the

integral equation

`�D

�1

QD

�1

k

Q` = D

�1

QD

�1

k

Q:

8



In deriving this equation, it is helpful to note that the operatorD

�1

k

Q simpli�es

to D

�1

Q when acting on o�-diagonal matrices. We claim that the right-hand

side of this integral equation lies in L

1

z

(L

q

k

), q > 2p=(p � 2). Accepting the

claim, we may then use Lemma C to obtain that m

d

� 1 lies in L

1

z

(L

q

k

(fk :

jkj > Rg)) for some R. Note that this conclusion does not depend on the

hypothesis Q

�

= Q.

From Theorem A, we have that km(�; k)k

L

r

��

is continuous and hence locally

bounded. Then the hypothesis that Q 2 L

p

c

and the integral equation (1.4)

imply that km(�; k)k

L

1

is locally bounded. This implies thatm

d

�1 2 L

1

z

(L

q

k

).

Now we turn to the proof of the claim. Here, we write out one entry in the

matrix m

2

= D

�1

QD

�1

k

Q. The other entry may be handled in the same way.

Explicitly, we have

m

11

2

(z; k)

=

Z

Q

12

(z

1

)

(z � z

1

)

Z

Q

21

(z

2

)

(�z

1

� �z

2

)

exp(�ik(z

1

� z

2

)� i

�

k(�z

1

� �z

2

)) d�(z

2

)d�(z

1

):

To see that this is in L

1

z

(L

q

k

), we use the integral form of Minkowski's inequality

to bring the L

q

k

-norm inside the �rst integral and then the Hausdor�-Young

inequality to see that the inner integral gives a function in L

q

k

, q > 2p=(p� 2).

This follows because, if Q 2 L

p

c

, then the expression Q

21

(�)=(�z

1

�
�
�) lies in L

q

0

for q

0

in the dual range.

Finally, we show that m

o�

is in L

1

z

(L

q

k

). To do this, we write m

o�

=

D

�1

k

Q(1) + D

�1

k

Q(m

d

� 1). The �rst term is in L

1

z

(L

q

k

) by the Hausdor�-

Young inequality and the second term may be shown to lie in L

1

(L

q

k

) us-

ing Minkowski's integral inequality and the above observation that m

d

� 1 2

L

1

z

(L

q

k

).

Proof of Lemma C. To estimate the operator norm, we consider only one

component. The other component is treated in the same manner. We write

Tg(z) =

Z

A(z; z

2

; k)Q

21

(z

2

)g(z

2

; k) d�(z

2

)

where now g is a scalar valued function and A is de�ned by

A(z; z

2

; k) =

Z

Q

12

(z

1

)

(z � z

1

)(�z

1

� �z

2

)

exp(�ik(z

1

� z

2

)� i

�

k(�z

1

� �z

2

)) d�(z

1

):

9



From Minkowski's integral inequality, we have

kTg(z; �)k

L

q

(fk:jkj>Rg)

�

Z

sup

fk:jkj>Rg

jA(z; z

2

; k)Q(z

2

)j d�(z

2

) sup

z

2

kg(z

2

; �)k

L

q

(fk:jkj>Rg)

:

Thus, we turn to a study of the integral in the previous expression which

dominates the operator norm. First, we note that a direct calculation gives

that

Z

jz�z

2

j<�

sup

k

jA(z; z

2

; k)jjQ

21

(z

2

)j d�(z

2

) � C�

1�2=p

kQk

2

L

p

(2.4)

where C depends on p and the size of the support of Q. Next we note that

part ii) of Sung's Lemma A.1 [15] or a classical work of Vekua [20] gives that

lim

jzj!1

Z

sup

k

jA(z; z

2

; k)jjQ

21

(z

2

)j d�(z

2

) = 0: (2.5)

Since Q is compactly supported, we have for R su�ciently large that

Z

jz

2

j>R

sup

k

jA(z; z

2

; k)jjQ

21

(z

2

)j d�(z

2

) = 0: (2.6)

Note that each of the three previous assertions did not use the oscillatory expo-

nential in the de�nition of A. This cancellation is used in our last observation.

Fix R

0

> 0 and � > 0, then we have

lim

R!1

sup

jkj>R;jzj<R

0

;

jz

2

j<R

0

;jz�z

2

j>�

jA(z; z

2

; k)j = 0: (2.7)

This follows from the Riemann-Lebesgue Lemma and the observation that

f

Q

12

(z

1

)

(z � z

1

)(�z

1

� �z

2

)

: jz � z

2

j > �; jzj < R; jz

2

j < Rg

is a pre-compact set in L

1

. Combining the observations (2.4), (2.5), (2.6) and

(2.7) we see that we may choose R so that

sup

z

Z

sup

jkj>R

jA(z; z

2

; k)jjQ

12

(z

2

)j d�(z

2

) � 1=2

and thus 1=2 dominates the operator norm of T on L

1

z

(L

q

(fk : jkj > Rg)):

10



3 Liouville's theorem for pseudo-analytic func-

tions.

The main result of this section is Corollary 3.11 where we establish uniqueness

for the pseudo-analytic equation

�

@u = f �u. Such a result is well-known when

f is in L

p

\L

p

0

, p 6= 2. See [3, 11, 15, 20]. The authors thank A. Nachman for

telling them of the extension to p = 2, the proof below is due to the authors.

In the proof below, we need to consider

�

@

�1

f where f lies in L

2

(R

2

). This

is best de�ned as an element of BMO(R

2

) and is thus an equivalence class

of functions which di�er by constants. We arbitrarily �x a representative by

setting

�

@

�1

f(z) =

1

�

Z

R

2

(

1

z � �

�

1

�

)f(�) d�(�):

Theorem 3.1 Suppose f is in L

2

(R

2

) and w 2 L

p

(R

2

), for some �nite p and

that w exp(�

�

@

�1

f) is holomorphic. Then w is zero.

Proof. In the proof below, we will let u = �

�

@

�1

f . We observe that since f

is in L

2

, the gradient of u, ru, is in L

2

and we have

kruk

L

2

= 2kfk

L

2

: (3.2)

We will use the notation B

r

(z) to denote the disk f� : jz � �j < rg and for a

disk B, we let

v

B

= �(B)

�1

Z

B

v d�

be the average of a function v on B.

We begin by claiming that if we �x r, then

u

B

r

(z)

= o(log jzj); as z !1: (3.3)

This is an immediate consequence of the following stronger result. There is an

absolute constant C so that if z; w 2 R

2

and r < s, then

ju

B

r

(z)

� u

B

s

(w)

j � Ckfk

L

2

(log(jz � wj=s+ s=r + 2))

1=2

: (3.4)

We remark that we do not know if the square root in this result can be ex-

ploited. To prove (3.4), we �rst observe that if we have two balls, B

1

and B

2

11



with

�

B

1

\

�

B

2

6= ; and 1=4 � �(B

1

)=�(B

2

) � 4, then Poincar�e's inequality

gives that

ju

B

1

� u

B

2

j � C

�

Z

~

B

jruj

2

�

1=2

(3.5)

where

~

B is the smallest disk containing B

1

[B

2

. Now suppose that B

r

(z) and

B

s

(w) are two arbitary disks with r < s. Then we may �nd a sequence of

disks B

0

= B

r

(z); B

1

; : : : ; B

N

= B

s

(w) with i)

�

B

j

\

�

B

j�1

6= ;, j = 1; : : : ; N ,

ii) 1=4 � �(B

j

)=�(B

j�1

) � 4, j = 1; : : : ; N , iii) if

~

B

j

is the smallest disk

containing B

j

[B

j�1

, j = 1; : : : ; N , then

P

N

j=1

�

~

B

j

� C and iv) N � C log(jz�

wj=s+ s=r + 2). In conditions iii) and iv), C is an absolute constant and �

E

is the characteristic function of the set E. Now we apply (3.5) on each pair

B

j�1

, B

j

and then use the Cauchy-Schwarz inequality to obtain

ju

B

0

� u

B

N

j � C

N

X

j=1

 

Z

~

B

j

jruj

2

d�

!

1=2

� C

p

N

0

@

Z

[

~

B

j

jruj

2

N

X

j=1

�

~

B

j

d�

1

A

1=2

:

Now (3.4) follows from iii), iv) and (3.2).

Next, we observe that since ru 2 L

2

, it follows that

lim

r!0

+

sup

z2R

2

Z

B

r

(z)

jruj

2

d� = 0:

Thus, we may use Theorem 7.21 of [7] to conclude that, given p > 1, there

exists C > 0 and r

0

= r

0

(p; f) so that if r < r

0

, then

Z

B

r

(z)

exp(p

0

ju� u

B

r

(z)

j) d� � C�(B

r

(z)): (3.6)

(An alternative proof can be given by observing that u has small BMO-norm

on small disks and then appealing to the John-Nirenberg inequality, see [14,

p. 154], for example.) Using H�older's inequality, we have that for all disks B,

j(e

u

w)

B

j � je

u

B

j�(B)

�1

�

Z

B

exp(p

0

ju� u

B

j) d�

�

1=p

0
�

Z

B

jwj

p

d�

�

1=p

:

We use that w is in L

p

, (3.3) and (3.6) to conclude that there is an r

0

= r

0

(p; u)

so that

j(e

u

w)

B

r

0

(z)

j = o(jzj); as z !1:

12



Since e

u

w is a holomorpic function, we may use the ordinary Liouville's theo-

rem to conclude that e

u

w is constant or that w = C

0

e

�u

.

Now we wish to show that C

0

= 0 and thus w = 0. To do this, we claim

that

�

�

�

�

�

Z

B

r

(0)

w d�

�

�

�

�

�

� �(B

r

(0))

1�1=p

kwk

p

; r > 0 (3.7)

and that for each � > 0, there exists an R

0

> 0 and C > 0 so that

Z

B

r

(0)

exp(�u) d� � �(B

r

(0))

1��

exp(�Ckfk

L

2

); r > R

0

: (3.8)

Together, these two claims force that C

0

= 0. The inequality (3.7) is a straight-

forward consequence of H�older's inequality. To establish (3.8), we observe that

Z

B

r

(0)

exp(�u) d� �

Z

B

r

(0)

exp(�juj) d� (3.9)

� �(B

r

(0)) exp(�juj

B

r

(0)

)

where the second inequality is Jensen's inequality. The triangle inequality

gives that

juj

B

r

(0)

� ju� u

B

r

(0)

j

B

r

(0)

+ ju

B

r

(0)

j:

Now Poincar�e's inequality, (3.4) and (3.2) imply that given � > 0, there exists

R

0

so that if r > R

0

, then

ju� u

B

r

(0)

j

B

r

(0)

+ ju

B

r

(0)

j � Ckfk

L

2

+ � log(�(B

r

(0))):

Thus we have

exp(�juj

B

r

(0)

) � exp(�Ckfk

L

2

)�(B

r

(0))

��

; r > R

0

: (3.10)

Now (3.9) and (3.10) gives (3.8).

Finally, a well-known argument gives the uniqueness for pseudo-analytic

functions.

Corollary 3.11 Suppose u 2 L

p

(R

2

) \ L

2

loc

(R

2

) for some p, 1 � p <1 and

satis�es the equation

�

@u = au+ b�u

where a and b lie in L

2

(R

2

). Then u = 0.

13



Proof. We de�ne a function f by

f(z) =

8

>

<

>

:

a(z) + b(z)�u(z)=u(z); u(z) 6= 0

0; u(z) = 0.

Then

�

@u = fu and thus u is zero by the previous theorem.

4 Relation between �



and S.

In this section, we show that if �



1

= �



2

, then we may extend 

1

and 

2

to

R

2

n

�


 in such a way that the scattering data S

1

and S

2

agree. Here, we are

constructing the �rst order systems D � Q

i

from the conductivities 

i

as in

section 1. In order to carry out this step, we impose the requirement that 
 be

a Lipschitz domain. By this we mean that the boundary is locally the graph

of a Lipschitz function.

Theorem 4.1 Suppose 
 is a Lipschitz domain and that L



1

and L



2

are two

divergence form operators for which �



1

= �



2

. If 

1

; 

2

2 W

1;p

(
), p > 2,

then we may extend 

1

and 

2

to R

2

n

�


 so that r

i

are in L

p

c

and so that the

scattering data for the associated �rst order systems satis�es S

1

= S

2

.

Proof. Since �



1

= �



2

and 

1

; 

2

2 W

1;p

(
), we have that 

1

= 

2

on @


(see [1, 4]). Thus we may extend 

1

and 

2

to R

2

n

�


 so that 

1

= 

2

in R

2

n

�


,



1

= 

2

= 1 outside a large ball, and r

1

;r

2

2 L

p

(R

2

). This extension uses

that @
 is Lipschitz. Now that 

j

is de�ned in all of R

2

, we may construct a

�rst order system D � Q

j

as in section 1. We let  

j

be the special solutions

for this system as in (1.2). Then for each j the scattering data S

j

(k) has the

representation

S

j

(k) = �2J

Z

R

2

�

0

�

@ 

12

j

e

�iz

�

k

@ 

21

j

e

i�zk

0

�

d�(z)

= �2J

"

Z

R

2

n


 

0

�

@ 

12

j

e

�iz

�

k

@ 

21

j

e

i�z

�

k

0

!

d�(z)

+

Z

@


 

0 �� 

12

j

e

�iz

�

k

� 

21

j

e

i�z

�

k

0

!

d�(z)

#
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where we use � =

1

2

(�

1

+ i�

2

) and �� =

1

2

(�

1

� i�

2

) with (�

1

; �

2

) the unit outer

normal to @
. From the second expression for S

j

, we see that if we can show

 

1

(z; k) =  

2

(z; k) in R

2

n

�


; (4.2)

then S

1

= S

2

.

We proceed to show (4.2) by a well-known argument (see [18, Lemma 2.1]).

We claim that if 

1

and 

2

are as above and �



1

= �



2

, then  

1

=  

2

. To see

this, we select a column of  

1

and call it '. We let '

1

and '

2

be the columns

of ' and set

v = 

�1=2

1

'

1

and ~v = 

�1=2

1

'

2

:

Since (D �Q

1

)' = 0, we have the compatibility condition

�

@v = @~v

and thus there exists a potential u satisfying @u = v and

�

@u = ~v. Since

(D �Q

1

)' = 0, we also have L



1

u = 0. Now, we set

~u =

8

>

<

>

:

u; in R

2

n

�




~u

2

; in 


where ~u

2

is the solution of the Dirichlet problem

8

<

:

L



2

~u

2

= 0 in 


~u

2

= u; on @
.

Since �



1

= �



2

and 

1

= 

2

in R

2

n

�


, we have L



2

~u = 0 in R

2

. Thus if we

set

~' = 

1=2

2

�

@~u

�

@~u

�

we have (D�Q

2

) ~' = 0 inR

2

. Since ~' and ' are equal outside 
, it follows from

the uniqueness assertion in Theorem A that ~' is a column of  

2

. Note that

initially, we only have that ~' is in L

2

loc

. However, because ~' satis�es (D�Q) ~' =

0 and Q is L

p

, p > 2, we may apply standard local elliptic regularity results to

conclude ' is actually continuous. Thus we have established (4.2) and hence

the theorem.
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5 The uniqueness theorem.

In this section, we give the remaining details needed to prove our uniqueness

theorem. The main result is Corollary 5.3. Theorem 5.1 shows that if the

scattering data agree, then the special solutions agree. Theorem 5.2 gives one

way of recovering the potential from these solutions.

Theorem 5.1 Suppose that Q

j

are two potentials satisfying Q

�

j

= Q

j

and

Q

j

2 L

p

c

, p > 2. Let S

j

be the scattering data for Q

j

. Then if S

1

= S

2

, we

have that m

1

= m

2

.

Proof. Let S = S

1

= S

2

be the common scattering data. According to

Theorem A, we have S 2 L

2

(R

2

). Now we recall the

�

@-equation for m

j

in

Theorem A. Since S

1

= S

2

, we may subtract these equations and obtain that

m = m

1

�m

2

satis�es

@

@

�

k

m(z; k) = m(z;

�

k)�

k

(z)S(k):

As in [3], if we set

u

�

(k) = m

11

(z; k)�m

12

(z;

�

k)

v

�

(k) = m

21

(z; k)�m

22

(z;

�

k);

then each of these functions satis�es an equation of the form

�

@w = r �w. Here,

r lies in L

2

(R

2

) since S lies in L

2

. This calculation relies on the symmetry

S(

�

k) = S(k)

�

which is discussed in [3]. Using Theorem 2.3 we may conclude

that m(z; �) lies in L

p

for p close to in�nity. Then Corollary 3.11 implies that

each of the functions u

�

; v

�

are zero for each z. Thus m

1

= m

2

.

Our next step is to observe that we may recover Q from the special solutions

m.

Theorem 5.2 Let Q be in L

p

c

, p > 2, and let

 = m

�

e

izk

0

0 e

�i�zk

�

be the special solutions constructed in Theorem A. Then for any r > 0, we

have

Q(z) = lim

k

0

!1

�(B

r

(0))

�1

Z

fk:jk�k

0

j<rg

D

k

m(z; k) d�(k):
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Proof. We recall that m satis�es the equation

D

k

m�Qm = 0:

From Theorem 2.3, we observe that m � 1 2 L

1

z

(L

q

k

) for some q < 1. This

implies that

lim

k

0

!1

Z

fk:jk�k

0

j<rg

D

k

m(z; k) d�(k) = Q(z) lim

k

0

!1

Z

fk:jk�k

0

j<rg

m(z; k) d�(k)

= �(B

r

(0))Q(z):

Finally, the solution of the inverse boundary value problem follows easily

from the above uniqueness result for the scattering problem

Corollary 5.3 Suppose 

1

and 

2

are two conductivities in W

1;p

(
), p > 2,

and 
 is a Lipschitz domain. If �



1

= �



2

, then 

1

= 

2

.

Proof. Since �



1

= �



2

, we have 

1

= 

2

on @
. Thus we may extend 

1

and



2

to R

2

n

�


 so that 

1

� 

2

= 0 in R

2

n

�


, 

1

= 

1

= 1 near in�nity and r

j

are in L

p

c

(R

2

). As in Theorem 4.1 we have that �



1

= �



2

implies S

1

= S

2

.

From Theorem 5.2, we obtain that @ log(

1

=

2

) =

�

@ log(

1

=

2

) = 0. Since



1

= 

2

= 1 near in�nity, this implies 

1

= 

2

.
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