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Abstrat

This paper onerns the two-dimensional Navier-Stokes equations in a Lip-

shitz domain 
 with nonhomogeneous boundary ondition u = ' on �
. As-

suming ' 2 L

1

(�
), we establish the existene of the universal attrator, and

show that its dimension is bounded by 

1

G+ 

2

Re

3=2

, where G is the Grashof

number and Re the Reynolds number.

1 Introdution

Consider the two-dimensional Navier-Stokes equations

8

>

>

>

<

>

>

>

:

�u

�t

� ��u+ (u � r)u+rp = f

in 


div u = 0

(1.1)

�
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with the nonhomogeneous boundary ondition

u = ' on �
 (1.2)

where f 2 L

2

(
) and ' 2 L

1

(�
) are time-independent funtions. We onsider this

equation in an appropriate Hilbert spae and show that there is an attrator A whih

all solutions approah as t!1. Furthermore, we show that this attrator has �nite

Hausdor� and fratal dimensions and establish that

dimA � 

1

G+ 

2

Re

3=2

(1.3)

where G is the Grashof number, Re is the Reynolds number, and 

1

; 

2

are nondi-

mensional onstants depending on 
. The main interest of this work lies in our

assumptions on the domain 
 oupied by the uid as well as on the nonhomoge-

neous boundary data '. Indeed, we will only assume that 
 is a (simply onneted)

Lipshitz domain in R

2

and

' 2 L

1

(�
); ' � n = 0 a.e. on �
 (1.4)

where n is the outward unit normal to �
. Suh assumptions are muh more physi-

ally realisti than the ones in the existing estimates. In partiular, our study overs

the lassial driven avity model where 
 = (0; 1)� (0; 1) is a square and ' = (1; 0)

on (0; 1)� f1g; ' = (0; 0) otherwise.

The study of attrators for the Navier-Stokes equations has reeived onsiderable

attention in reent years in an attempt to understand turbulene and haos math-

ematially. In the ase that 
 is smooth and ' = 0, the dimension estimate (1.3)

redues to dimA � 

1

G and is well-known. We refer the reader to [3, 4, 7℄ and

Temam's monograph [16℄ for further referenes.

Reently, it was shown by A. Ilyin [8℄ that, if ' = 0, the estimate dimA � G

in fat is valid for arbitrary domains in R

2

with �nite measures. For ows driven by

boundary onditions, (1.3) was established by A. Miranville and X. Wang [9℄ under

2



the assumptions that �
 is C

3

and jr'j 2 L

1

(�
). The present work extends the

result of Miranville and Wang to the nonsmooth setting.

The paper is organized as follows. In setion 2, we redue the problem (1.1)-

(1.2) to equations similar to the Navier-Stokes equations with homogeneous boundary

ondition. This will be done by onstruting a funtion  (bakground ow) suh

that

div = 0 in 
 and  = ' on �
. (1.5)

The basi idea of our onstrution, whih is motivated by the work of Miranville-

Wang, is to loalize the solution of the Stokes system with boundary data ' to a

"-neighborhood of �
. Let v = u �  where u is a solution of (1.1)-(1.2). Then v

satis�es, at least formally,

8

>

>

<

>

>

:

�v

�t

� ��v + (v � r)v + (v � r) + ( � r)v +rp = f + �� � ( � r) 

div v = 0

(1.6)

in 
 and

v = 0 on �
: (1.7)

In setion 3, we establish the existene and uniqueness of weak solutions to (1.6)-

(1.7). We also give a de�nition of weak solution to the boundary value problem (1.1)-

(1.2) for the Navier-Stokes equations. This de�nition is motivated by our onstrution

of solutions as a sum of a bakground ow and a solution to equation (1.6)-(1.7). We

prove that with our de�nition we have existene and uniqueness. It is easy to hek

that a suÆiently smooth solution of the Navier Stokes equations (1.1)-(1.2) also

satis�es our de�nition.

In setion 4 we show that, if vj

t=0

= v

0

2 H, then the solution of (1.6)-(1.7)

satis�es

v 2 L

1

lo

((0;1);D(A

1=4

)) (1.8)

where

H = ff 2 L

2

(
); divf = 0 in 
; f � n = 0 on �
g (1.9)

3



and D(A

1=4

) denotes the domain of A

1=4

, with A being the Stokes operator. We

remark that, sine ' is merely a bounded funtion on �
,  62 H

1

(
) in general.

Thus one may not expet v 2 L

1

lo

((0;1);D(A

1=2

)) as in the standard theory, even if

the initial data v

0

is smooth.

Let w(t) = S(t)v

0

denote the solution to (1.6)-(1.7) with initial data v

0

. Using

estimates obtained in setion 4, we show in setion 5 that the semigroup S(t) is

uniformly di�erentiable on bounded subsets of H, and the ball in D(A

1=4

) entered

at 0 with a suitable radius absorbs any bounded set of H. This, together with the

abstrat mahinery in [16℄, gives the existene of the universal attrator as well as

the desired estimate of its dimension.

To state the main theorem, we introdue the Grashof number G and the Reynolds

number Re:

G =

kfk

L

2

(
)

�

2

�

1

; Re =

k'k

L

1

(�
)

��

1=2

1

: (1.10)

In the above, �

1

is the �rst eigenvalue of the Stokes operator A.

The following is the main result of the paper.

Theorem 1.11 Let 
 be a simply onneted Lipshitz domain in R

2

. Suppose ' 2

L

1

(�
), ' � n = 0, and f 2 L

2

(
). Then

(i) The dynamial system assoiated to (1.6){(1.7), more preisely, to the abstrat

di�erential equation (3.1), possesses an universal attrator A,

(ii) The Hausdor� and fratal dimensions of A are bounded by 

1

G+ 

2

Re

3=2

+1,

where 

1

; 

2

are nondimensional onstants depending on 
.

Remark 1.12. The bakground ow  in (1.5) is C

1

in 
 and belongs to H

1=2

(
)\

L

1

(
). Also,  = ' on �
 in the sense of nontangential onvergene. See Theorem

2.3, Propositions 2.13 and 2.14.

Remark 1.13. Note that if S(t)v

0

denotes the solution to (1.6)-(1.7) with the initial

data v

0

, then  + S(t)(u

0

�  ) is the solution to (1.1)-(1.2) with the initial data u

0

4



and boundary data '. Hene the universal attrator for (1.1)-(1.2) is given by the

translation  +A = f + v : v 2 Ag.

2 Constrution of Bakground Flow

Let 
 be a bounded domain inR

d

. We say that 
 is a Lipshitz domain if its boundary

�
 an be overed by �nite many balls B

j

= B(Q

j

; r

0

) entered at Q

j

2 �
 suh

that for eah B

j

, there exists a retangular oordinate system and a Lipshitz funtion

 

j

: R

d�1

! R with

B(Q

j

; 3r

0

) \ 
 = f(x

1

; � � � ; x

d

); x

d

>  

j

(x

1

; � � � ; x

d�1

)g \ 
:

Throughout this paper we will assume that 
 is a simply onneted Lipshitz domain

in R

2

.

For a funtion u on 
, we de�ne its nontangential maximal funtion (u)

�

by

(u)

�

(Q) = supfju(x)j; x 2 
; jx�Qj � 2 dist(x; �
)g; Q 2 �
: (2.1)

As we mentioned in the introdution, our bakground ow will be onstruted

using the solution to the Stokes system:

8

>

>

>

<

>

>

>

:

��u+rq = 0 in 


divu = 0 in 


u = ' a.e. on �
 in the sense of nontangential onvergene.

(2.2)

Theorem 2.3 Let 
 be a simply onneted Lipshitz domain in R

2

. If ' 2 L

2

(�
)

and

Z

�


' � n d� = 0, there exists a unique u and a unique (up to a onstant) q

satisfying (2.2) and (u)

�

2 L

2

(�
). In fat, the solution (u; q) will satisfy

Z

�


j(u)

�

j

2

d� +

Z




jru(x)j

2

dist(x; �
) dx +

Z




jq(x)j

2

dist(x; �
) dx � C

Z

�


j'j

2

d�:

(2.4)

If, in addition, ' 2 L

1

(�
), then

sup

x 2 


ju(x)j+ sup

x 2 


jru(x)j dist(x; �
) � Ck'k

L

1

(�
)

: (2.5)
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Remark. If 
 is a Lipshitz domain in R

d

; d � 3 with onneted boundary, the L

2

-

estimate (2.4) was established in [6℄. Also see [2℄. In the ase d = 3, the L

1

-estimate

(2.5) was obtained in [12℄. The arguments in [6℄ and [12℄ an be extended to the

ase d = 2, with some modi�ations. The two-dimensional ase is slightly di�erent

beause of the logarithmi singularity of the fundamental solution. In the appendix,

we will indiate the hanges that are needed in two dimensions.

Let u = (u

1

; u

2

) be the solution of (2.2) with ' 2 L

1

(�
) and ' � n = 0. Fix

P 2 �
. We de�ne

g(x) =

Z

x

P

(�u

2

; u

1

) � T ds (2.6)

where T denotes the unit tangent vetor to the path from P to x = (x

1

; x

2

). Sine 


is simply onneted and div u = 0 in 
, g is well-de�ned by Green's theorem, and

u =

 

�g

�x

2

;�

�g

�x

1

!

: (2.7)

Moreover, sine u = ' on �
 and ' � n = 0 a.e., we have

g = 0 on �
. (2.8)

Next let " 2 (0;  diam(
)) be a onstant to be determined later. Let �

"

2 C

1

0

(R

2

)

suh that, 0 � � � 1,

8

<

:

�

"

= 1 in fx 2 R

2

; dist(x; �
) � 

1

"g

�

"

= 0 in fx 2 R

2

; dist(x; �
) � 

2

"g

(2.9)

and

jr

�

�

"

j � 

�

="

j�j

: (2.10)

We remark that �

"

an be found in the form f

 

�(x)

"

!

where � 2 C

1

is a regularized

distane funtion to �
 (see [13, p.170℄) and f is a standard bump funtion.

Finally, we de�ne the bakground ow

 =  

"

=

 

�

�x

2

(g�

"

);�

�

�x

1

(g�

"

)

!

: (2.11)
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Clearly, div = 0 in 
;  = u in fx 2 
; dist(x; �
) < 

1

"g. Hene,  = ' on �


in the sense of nontangential onvergene. Also note that

supp � fx 2 
; dist(x; �
) � 

2

"g: (2.12)

Proposition 2.13 With ' and  as above, we have

k k

L

1

(
)

� Ck'k

L

1

(�
)

:

Proof. Note that, by (2.11), (2.7) and (2.5),

j (x)j � jrg(x)j+ jg(x)j jr�

"

(x)j � Ck'k

L

1

(�
)

+ jg(x)j jr�

"

(x)j:

To estimate the seond term, by (2.12), we may assume dist(x; �
) � 

2

". Sine

g = 0 on �
; jg(x)j � C"krgk

L

1

(
)

= C"kuk

L

1

(
)

. Thus, by (2.10) and (2.5),

jg(x)j jr�

"

(x)j �

C

"

jg(x)j � Ck'k

L

1

(�
)

:

Proposition 2.14 Let 2 � p � 1. Then

k jr j dist(�;
)

1�1=p

k

L

p

(
)

� Ck'k

L

p

(�
)

:

Proof. It follows from (2.4), (2.5) and omplex interpolation that

k jruj dist(�; �
)

1�1=p

k

L

p

(
)

� Ck'k

L

p

(�
)

; 2 � p � 1: (2.15)

Note that, by the de�nition (2.11) of  and (2.10),

jr j � Cfjruj+

1

"

juj+

1

"

2

jgjg:

With (2.15), we only need to estimate

1

"

juj and

1

"

2

jgj. We may assume dist(x; �
) �



2

" in view of (2.12).
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For

1

"

juj, we note that

Z

dist(x;�
)�

2

"

�

�

�

�

u

"

�

�

�

�

p

dist(x; �
)

p�1

dx

�

C

"

Z

dist(x;�
)�

2

"

juj

p

dx � C

Z

�


j(u)

�

j

p

d� � C

Z

�


j'j

p

d�

where the last inequality is a onsequene of (2.4)-(2.5) and real interpolation.

Similarly,

Z

dist(x;�
)�

2

"

�

�

�

�

g

"

2

�

�

�

�

p

dist(x; �
)

p�1

dx �

C

"

p+1

Z

dist(x;�
)�

2

"

jgj

p

dx

�

C

"

p

Z

�


j(g)

�

"

j

p

d�

where

(g)

�

"

(Q) = sup fjg(x)j; x 2 
; dist(x; �
) � 

2

"; jx�Qj < 2 dist(x; �
)g:

Sine for any x 2 
 with dist(x; �
) � 

2

" and jx�Qj < 2 dist(x; �
),

jg(x)j = jg(x)� g(Q)j � C" (rg)

�

(Q) = C" (u)

�

(Q);

we have (g)

�

"

(Q) � C" (u)

�

(Q). It follows that

Z

dist(x;�
)�

2

"

�

�

�

�

g

"

2

�

�

�

�

p

dist(x; �
)

p�1

dx � C

Z

�


j(u)

�

j

p

d� � C

Z

�


j'j

p

d�:

The proof is omplete.

Proposition 2.16 Let  be de�ned by (2.11). Then

� = r(q�

"

) + F

where suppF � fx 2 
; 

1

" � dist(x; �
) � 

2

"g and

kFk

L

2

(
)

�

C

"

3=2

k'k

L

2

(�
)

:

8



Proof. A simple omputation shows

� = r(q�

"

) + F (2.17)

where

F = qr�

"

+ 2r�

"

� ru+ u��

"

+�g

 

��

"

�x

2

;�

��

"

�x

1

!

+2rg � r

 

��

"

�x

2

;�

��

"

�x

1

!

+ g�

 

��

�

�x

2

;�

��

�

�x

1

!

:

Clearly, suppF � fx 2 
; 

1

" � dist(x; �
) � 

2

"g = (�
)

"

and

jF j � C

�

�

�

�

�

q

"

�

�

�

�

+

�

�

�

�

ru

"

�

�

�

�

+

�

�

�

�

u

"

2

�

�

�

�

+

�

�

�

�

g

"

3

�

�

�

�

�

:

It follows that

Z




jF j

2

dx � C

(

Z

(�
)

"

�

�

�

�

q

"

�

�

�

�

2

dx+

Z

(�
)

"

�

�

�

�

ru

"

�

�

�

�

2

dx+

Z

(�
)

"

�

�

�

�

u

"

2

�

�

�

�

2

dx+

Z

(�
)

"

�

�

�

�

g

"

3

�

�

�

�

2

dx

)

:

Using (2.4), we have

Z

(�
)

"

�

�

�

�

q

"

�

�

�

�

2

dx �

C

"

3

Z




jqj

2

dist(x; �
) dx �

C

"

3

Z

�


j'j

2

d�;

Z

(�
)

"

�

�

�

�

ru

"

�

�

�

�

2

dx �

C

"

3

Z




jruj

2

dist(x; �
) dx �

C

"

3

Z

�


j'j

2

d�;

Z

(�
)

"

�

�

�

�

u

"

2

�

�

�

�

2

dx �

C

"

4

Z

(�
)

"

juj

2

dx �

C

"

3

Z

�


j(u)

�

j

2

d� �

C

"

3

Z

�


j'j

2

d�:

Finally,

Z

(�
)

"

�

�

�

�

g

"

3

�

�

�

�

2

dx =

1

"

6

Z

(�
)

"

jgj

2

dx

�

C

"

5

Z

�


j(g)

�

"

j

2

d� �

C

"

3

Z

�


j(rg)

�

"

j

2

d�

�

C

"

3

Z

�


j(u)

�

j

2

d� �

C

"

3

Z

�


j'j

2

d�;

where we have used (g)

�

"

� C"(rg)

�

"

. The estimate of kFk

L

2

(
)

now follows.
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We now set v = u �  where u is a solution of (1.1). Using (2.17), formally we

have

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�v

�t

� ��v + (v � r)v + (v � r) + ( � r)v

+r(p+ �q�

"

) = f + �F � ( � r) 

div v = 0

v = 0 on �
.

(2.18)

3 Existene of Weak Solutions to (2.18)

We begin with a list of notation.

H = fu 2 L

2

(
); divu = 0 in 
; u � n = 0 on �
g,

V = fu 2 H

1

0

(
); div u = 0 in 
g,

j � j

p

, the L

p

(
) norm,

k � k, the norm in V ,

h ; i, the inner produt in H or the dual produt between V and V

0

,

( ; ) the inner produt in V .

We let A denote the Stokes operator, whih may be de�ned as the unique positive

self-adjoint operator assoiated with the quadrati form (�; �) on V (see [10, Theorem

VIII.15℄). We let B(u; v) = (u�r)v, and we will see below that this de�nes an element

of H

�1

(
) � V

0

. We let P be the orthogonal projetor in L

2

(
) on the spae H. In

view of (2.18), we onsider the di�erential equation

8

>

>

<

>

>

:

dv

dt

+ �Av +B(v; v) +B(v;  ) +B( ; v) = P (f + �F )� B( ;  )

v(0) = v

0

2 H:

(3.1)

10



We point out that hB(v;  ); wi, hB( ; v); wi and hB( ;  ); wi are well-de�ned if v,w 2

V . This follows easily from the estimate

j (x)j+ jr (x)j dist(x; �
) � C k'k

L

1

(�
)

(3.2)

(see Propositions 2.13 and 2.14) and Hardy's inequality

Z




jv(x)j

2

[dist(x; �
)℄

2

dx � C

Z




jrv(x)j

2

dx; for v 2 H

1

0

(
). (3.3)

Thus (3.1) is an abstrat di�erential equation in V

0

.

We �rst establish the existene of solutions of (3.1) by the standard Faedo-Galerkin

method.

Let fw

j

g

1

j=1

be an orthonormal basis of H suh that Aw

j

= �

j

w

j

; �

1

� �

2

� � � �.

Fix m � 1, let

v

m

(t) =

m

X

j=1

g

jm

(t)w

j

:

We solve the system of ODE's

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

*

dv

m

dt

; w

j

+

+ �(v

m

; w

j

) + b(v

m

; v

m

; w

j

) + b( ; v

m

; w

j

) + b(v

m

;  ; w

j

)

= h

�

f; w

j

i � b( ;  ; w

j

); j = 1; 2; � � � ; m;

v

m

(0) = P

m

v

0

(3.4)

where b(u; v; w) = hB(u; v); wi;

�

f = P (f + �F ), and P

m

: H ! spanfw

1

; � � � ; w

m

g

is the projetor.

We now show that fv

m

(t)g is a bounded set in L

1

((0; T );H) \ L

2

((0; T );V ) and

(

dv

m

dt

)

is a bounded set in L

2

((0; T );V

0

). By (3.4), we have

1

2

d

dt

jv

m

j

2

2

+ �kv

m

k

2

+ b(v

m

; v

m

; v

m

) + b(v

m

;  ; v

m

) + b( ; v

m

; v

m

)

= h

�

f; v

m

i � b( ;  ; v

m

):

Sine b(v

m

; v

m

; v

m

) = 0; b( ; v

m

; v

m

) = 0, we get

1

2

d

dt

jv

m

j

2

2

+ �kv

m

k

2

� jb(v

m

;  ; v

m

)j+ jh

�

f; v

m

ij+ jb( ;  ; v

m

)j: (3.5)

11



We estimate eah term on the right-hand side of (3.5) separately. First we use

(3.2), (2.12) and (3.3) to obtain

jb(v

m

;  ; v

m

)j �

Z




jv

m

j jr j jv

m

j dx

� Cj'j

L

1

(�
)

Z

dist(x;�
)�

2

"

jv

m

j

2

dx

dist(x; �
)

� C"j'j

L

1

(�
)

Z




jv

m

j

2

dx

[dist(x; �
)℄

2

(3.6)

� C"j'j

L

1

(�
)

kv

m

k

2

:

Choose

" =  �min

 

�

j'j

L

1

(�
)

; diam


!

(3.7)

and  is so small that

jb(v

m

;  ; v

m

)j �

�

4

kv

m

k

2

: (3.8)

Next, note that

jh

�

f; v

m

ij � jhf; v

m

ij+ �jhF; v

m

ij � jf j

2

jv

m

j

2

+ �

Z



1

"�dist(x;�
)�

2

"

jF j jv

m

j dx

sine suppF � fx 2 
; 

1

" � dist(x; �
) � 

2

"g. It then follows from Proposition

2.16 and (3.3) that

jh

�

f; v

m

ij � jf j

2

�

kv

m

k

p

�

1

+ �jF j

2

�

(

Z




jv

m

j

2

[dist(x; �
)℄

2

dx

)

1=2

�  "

� jf j

2

�

kv

m

k

p

�

1

+ � �

k'k

L

2

(�
)

"

3=2

� kv

m

k �  " (3.9)

= kv

m

k

(

jf j

2

p

�

1

+

 �

p

"

k'k

L

2

(�
)

)

:

Finally, by (3.2)-(3.3) and (2.12),

jb( ;  ; v

m

)j �

Z




j j jr j jv

m

j dx � C k'k

L

1

(�
)

Z




jv

m

j

dist(x; �
)

j j dx

� Ck'k

L

1

(�
)

�

(

Z




jv

m

j

2

[dist(x; �
)℄

2

dx

)

1=2

(

Z

dist(x;�
)�

2

"

j j

2

dx

)

1=2

� Ck'k

2

L

1

(�
)

j�
j

1=2

kv

m

k �

p

":
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This, together with (3.5), (3.8) and (3.9), gives

1

2

d

dt

jv

m

j

2

2

+ �kv

m

k

2

�

�

4

kv

m

k

2

+ kv

m

k

(

jf j

2

p

�

1

+

 �

p

"

k'k

L

2

(�
)

+ C

p

"j�
j

1=2

k'k

2

L

1

(�
)

)

�

�

2

kv

m

k

2

+

C

�

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

where we also used the Cauhy inequality in the seond inequality.

It follows that

d

dt

jv

m

j

2

2

+ �kv

m

k

2

�

C

�

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

: (3.10)

Using (3.10), kv

m

k

2

� �

1

jv

m

j

2

2

and Gronwall's inequality, we then obtain

jv

m

(t)j

2

2

(3.11)

� e

���

1

t

jv

0

j

2

2

+

C

�

2

�

1

(

jf j

2

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

:

By integration, (3.10) also gives

�

Z

t

s

kv

m

(�)k

2

d� (3.12)

� jv

m

(s)j

2

+

C

�

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

� (t� s):

The estimates (3.11) and (3.12) show that fv

m

(t)g is a bounded set in L

1

((0; T );H)\

L

2

((0; T );V ). By onsidering

*

dv

m

dt

; w

+

for w 2 V , we may prove that

(

dv

m

dt

)

is a

bounded set in L

2

((0; T );V

0

) in a similar manner. This and the standard tehniques

found in [16℄ now give the following result.

Theorem 3.13 Let f 2 H; v

0

2 H. Then there exists a unique v(t) suh that

v(0) = v

0

,

v 2 C([0; T ℄;H) \ L

2

((0; T );V );

dv

dt

2 L

2

((0; T );V

0

); 8 T > 0

and for any w 2 V ,

*

dv

dt

; w

+

+ �(v(t); w) + b(v(t); v(t); w) + b(v(t);  ; w) + b( ; v(t); w)

= h

�

f; wi � b( ;  ; w) a.e. t.
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Now we give our de�nition of weak solution to the boundary value problem (1.1)-

(1.2) for the Navier-Stokes equations. We note that with this de�nition of solution,

we have existene and uniqueness. It is easy to see that a smooth solution of Navier-

Stokes equations satis�es our de�nition.

De�nition of Weak Solution. Let u

0

and f lie in the spae H. Let ' 2 L

1

(�
)

and ' � n = 0 on �
. We say that u is a weak solution of the equations

8

>

>

>

>

>

<

>

>

>

>

>

:

�u

�t

� ��u + (u � ru) = f �rp; in 
� (0; T )

div u = 0 in 
� (0; T )

u = ' on �


u(�; 0) = u

0

(3.14)

if the following three onditions hold:

(1) u 2 C([0; T ℄;H), u(�; 0) = u

0

, and du=dt 2 L

2

lo

((0; T );V

0

).

(2) For every v 2 C

1

0

(
) with div v = 0, we have

d

dt

hu; vi � �hu;�vi �

Z




u

i

u

j

�v

i

�x

j

dx = hf; vi

as distributions on (0; T ). Here, we are using the summation onvention.

(3) There exist funtions  2 C

2

(
) \ L

1

(
), q 2 C

1

(
) and g 2 L

2

(
) so that

8

>

<

>

:

� = rq + g in 


div = 0 in 


 = ' on �
:

We assume that  obtains its boundary values in the sense of nontangential onver-

gene as in [6℄. Finally, we require that the funtion u�  lie in L

2

((0; T );V ).

Remark 1. We �rst observe that if we have two bakground ows,  

1

and  

2

as

in (3), then  

1

�  

2

2 V . To see this, observe that we an use the Lax-Milgram

Theorem to onstrut a solution of

8

>

<

>

:

�w = g

1

� g

2

+r(q

1

� q

2

) in 


divw = 0 in 


w = 0 on �
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whih lies in V . By the estimate (A.12) for the solutions of the Stokes system in the

appendix, one must have w =  

1

�  

2

. Additional arguments also give that  

1

�  

2

lies in H

3=2

(
) (see [2℄), but we do not need this.

Remark 2. If u is a solution as de�ned above, then we also have that u 2 L

4

(
 �

(0; T )). In fat, we have

�

Z




ju(x; t)j

4

dx

�

1=4

�

�

Z




ju�  j

4

dx

�

1=4

+

�

Z




j j

4

dx

�

1=4

� C

�

Z




jr(u�  )j

2

dx

�

1=4

�

Z




ju�  j

2

dx

�

1=4

+

�

Z




j j

4

dx

�

1=4

:

Now we use that  2 L

1

(
), u�  2 L

2

((0; T );V ) and u 2 C([0; T ℄;H).

Theorem 3.15 Let u

0

2 H, f 2 H. Suppose that ' 2 L

1

(�
) and ' �n = 0 on �
.

Then (3.14) has a unique weak solution.

Proof. We begin with the uniqueness. Suppose that u

1

and u

2

are two solutions

with assoiated ows  

1

and  

2

. Let v 2 C

1

0

(
) and div v = 0. Then by (2) we have

d

dt

hu

1

� u

2

; vi � �hu

1

� u

2

;�vi+

Z




(u

i

2

u

j

2

� u

i

1

u

j

1

)

�v

i

�x

j

dx = 0: (3.16)

We laim that we also have (3.16) for any v 2 V . In fat, by Remark 1 and (3) of our

de�nition of weak solution, we have u

1

� u

2

= (u

1

�  

1

) � (u

2

�  

2

) + ( 

1

�  

2

) 2

L

2

((0; T );V ). Thus we an write

hu

1

� u

2

;�vi = �(u

1

� u

2

; v):

We also have that for ` = 1; 2,

j

Z




u

i

`

u

j

`

�v

i

�x

j

dxj �

�

Z




ju

`

j

4

dx

�

1=2

�

Z




jrvj

2

dx

�

1=2

:

Hene, by Remark 2, we may take v 2 V in the seond and third terms in (3.16). We

onlude that

d

dt

(u

1

� u

2

) 2 L

2

((0; T );V

0

)

15



and (3.16) holds for any v 2 V . Let v = u

1

� u

2

, then we obtain that

1

2

d

dt

ju

1

� u

2

j

2

+ �ku

1

� u

2

k

2

�

�

�

�

�

�

Z




(u

i

1

u

j

1

� u

i

2

u

j

2

)

�v

i

�x

j

dx

�

�

�

�

�

:

Note that

Z




(u

i

1

u

j

1

� u

i

2

u

j

2

)

�v

i

�x

j

dx =

Z




u

i

1

v

j

�v

i

�x

j

+ u

j

2

1

2

�

�x

j

jvj

2

dx

=

Z




u

i

1

v

j

�v

i

�x

j

dx;

where the seond equality may be justi�ed by using u

2

= (u

2

�  

2

) +  

2

and  

2

2

L

1

(
), u

2

�  

2

2 L

2

((0; T ); V ). It follows that

�

�

�

�

�

Z




(u

i

1

u

j

1

� u

i

2

u

j

2

)

�v

i

�x

j

dx

�

�

�

�

�

�

�

Z




ju

1

j

4

�

1=4

�

Z




jvj

2

dx

�

1=4

�

Z




jrvj

2

dx

�

3=4

� �kvk

2

+ C

�

Z




ju

1

j

4

dx

Z




jvj

2

dx:

Thus, we obtain the di�erential inequality

1

2

d

dt

jvj

2

� C

�

jvj

2

Z




ju

1

j

4

dx:

Sine we have that u

1

2 L

4

(
 � (0; T )) and v(�; 0) = 0, this implies that v = 0 and

we have established the uniqueness of our solutions.

Next, we establish existene of solutions. The main work has already been done

in Proposition 2.16 and Theorem 3.13 where we onstruted the family of bakground

ows  

�

and the funtion v whih satis�es (3.1). Now let u = v +  

�

where v is the

solution of (3.1) with initial data v

0

= u

0

�  

"

given in Theorem 3.13. It is easy to

hek that u satis�es the onditions (1) and (3) in the de�nition of the weak solution.

To see (2), we observe that  

�

is in C

1

(
) while the test funtion v is ompatly

supported. Thus the formal manipulations used to arrive at the equation (2.18) for

v are easily justi�ed to show that u satis�es (2).
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4 Regularity of weak solutions

We devote this setion to the proof of v 2 L

1

lo

((0; T );D(A

1=4

)) where v is the solution

of (3.1) given in Theorem 3.13. Sine ' 2 L

1

(�
), we annot expet the solution

v 2 L

1

lo

((0; T );D(A

1=2

)).

Reall that the powers of the Stokes operator A are de�ned for z 2 C by

A

z

f =

X

j

�

z

j

a

j

w

j

for f =

X

j

a

j

w

j

and

D(A

z

) = ff ; A

z

f 2 Hg = ff =

X

a

j

w

j

;

X

j

�

2Rez

j

ja

j

j

2

<1g:

Lemma 4.1 There exists a onstant C suh that

Z




ju(x)j

2

dx

dist(x; �
)

� C

Z




jA

1=4

uj

2

dx for u 2 D(A

1=4

).

Proof. Consider the operator

T

z

= (dist(x; �
))

�z

A

�z=2

:

If Rez = 1,

Z




jT

z

uj

2

dx =

Z




jA

�z=2

uj

2

dx

[dist(x; �
)℄

2

� C

Z




juj

2

dx; for u 2 H.

This follows from the fat A

�z=2

u 2 D(A

1=2

) = V � H

1

0

(
) and (3.3). Clearly, if

Rez = 0,

Z




jT

z

uj

2

dx =

Z




juj

2

dx for u 2 H.

Thus, by Stein's interpolation theorem [14, p. 205℄, we obtain

Z




jT

1=2

uj

2

dx � C

Z




juj

2

dx;

i.e.

Z




jA

�1=4

uj

2

dist(x; �
)

dx � C

Z




juj

2

dx for u 2 H.

Hene, if u 2 D(A

1=4

),

Z




ju(x)j

2

dx

dist(x; �
)

� C

Z




jA

1=4

uj

2

dx:
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Remark. It follows from Lemma 4.1 that

Z




jA

�

uj

2

dist(x; �
)

dx � C

Z




jA

�+1=4

uj

2

dx if u 2 D(A

�+1=4

). (4.2)

Lemma 4.3 There exists a onstant C suh that

juj

4

� CjA

1=4

uj

2

for u 2 D(A

1=4

).

The onstant C does not depend on 
.

Proof. By Sobolev imbedding and a resaling argument

kuk

L

4

(R

2

)

� Ck(��)

1=4

uk

L

2

(R

2

)

if (1 + j�j)

1=4

û(�) 2 L

2

(R

2

).

Let E be the extension operator de�ned by

Eu =

8

>

<

>

:

u x 2 


0 x 62 
:

Then

(��)

z=2

E : H

1

0

(
)! L

2

(R

2

) if Rez = 1;

(��)

z=2

E : L

2

(
)! L

2

(R

2

) if Rez = 0:

By interpolation,

(��)

1=4

E : [H

1

0

(
); L

2

(
)℄

1=2

! L

2

(R

2

)

where [�; �℄

�

denotes the omplex interpolation spae (see [1℄). Thus, if u 2 D(A

1=4

),

kuk

L

4

(
)

� Ck(��)

1=4

Euk

L

2

(R

2

)

� Ckuk

[H

1

0

(
);L

2

(
)℄

1=2

� CjA

1=4

uj

L

2

(
)

where we have used D(A

1=4

) = [D(A

1=2

);H℄

1=2

� [H

1

0

(
); L

2

(
)℄

1=2

in the last in-

equality.
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We are now ready to estimate sup

t�t

0

>0

jA

1=4

v(t)j

2

where v(t) is a solution given

in Theorem 3.13. By (3.4),

*

dv

m

dt

; A

1=2

v

m

+

+ �hAv

m

; A

1=2

v

m

i+ b(v

m

; v

m

; A

1=2

v

m

)

+b( ; v

m

; A

1=2

v

m

) + b(v

m

;  ; A

1=2

v

m

)

= h

�

f; A

1=2

v

m

i+ b( ;  ;A

1=2

v

m

):

It follows that

1

2

d

dt

jA

1=4

v

m

j

2

2

+ �jA

3=4

v

m

j

2

2

� jb(v

m

; v

m

; A

1=2

v

m

)j

+jb( ; v

m

; A

1=2

v

m

)j+ jb(v

m

;  ; A

1=2

v

m

)j

+jh

�

f; A

1=2

v

m

ij+ jb( ;  ;A

1=2

v

m

)j:

(4.4)

We have to estimate the right-hand side of (4.4) term by term.

First, by H�older's inequality and Lemma 4.3,

jb(v

m

; v

m

; A

1=2

v

m

)j �

Z




jv

m

j jrv

m

j jA

1=2

v

m

j dx

� jv

m

j

4

jrv

m

j

2

jA

1=2

v

m

j

4

� CjA

1=4

v

m

j

2

jA

1=2

v

m

j

2

jA

3=4

v

m

j

2

(4.5)

�

�

8

jA

3=4

v

m

j

2

2

+

C

�

jA

1=4

v

m

j

2

2

jA

1=2

v

m

j

2

2

:

Next, using (3.2) and Cauhy inequality,

jb( ; v

m

; A

1=2

v

m

)j �

Z




j j jrv

m

j jA

1=2

v

m

j dx

� Ck'k

L

1

(�
)

jA

1=2

v

m

j

2

2

(4.6)

� Ck'k

L

1

(�
)

jA

1=4

v

m

j

2

jA

3=4

v

m

j

2

�

�

8

jA

3=4

v

m

j

2

2

+

C

�

k'k

2

L

1

(�
)

jA

1=4

v

m

j

2

2

:

Similarly, by (3.2) and (3.3),

jb(v

m

;  ; A

1=2

v

m

)j �

Z




jv

m

j jr j jA

1=2

v

m

j dx
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� Ck'k

L

1

(�
)

Z




jv

m

(x)j

dist(x; �
)

jA

1=2

v

m

j dx

� Ck'k

L

1

(�
)

jA

1=2

v

m

j

2

2

(4.7)

�

�

8

jA

3=4

v

m

j

2

2

+

C

�

k'k

2

L

1

(�
)

� jA

1=4

v

m

j

2

2

:

We now estimate jh

�

f; A

1=2

v

m

ij by

jhf; A

1=2

v

m

ij+ �jhF;A

1=2

v

m

ij

� jf j

2

jA

1=2

v

m

j

2

+ �

Z




jF j jA

1=2

v

m

j dx

� jf j

2

� jA

1=2

v

m

j

2

+  �

p

"

Z




jF j �

jA

1=2

v

m

j

dist(x; �
)

1=2

dx

� jf j

2

�

jA

3=4

v

m

j

2

�

1=4

1

+  �

p

" jF j

2

(

Z




jA

1=2

v

m

j

2

dist(x; �
)

dx

)

1=2

(4.8)

� jA

3=4

v

m

j

2

(

jf j

2

�

1=4

1

+  �

p

" jF j

2

)

�

�

8

jA

3=4

v

m

j

2

2

+

C

�

(

jf j

2

�

1=4

1

+ �

p

" jF j

2

)

2

where we used the fat suppF � fx 2 
; 

1

" � dist(x; �
) � 

2

"g in the seond

inequality and Lemma 4.1 in fourth inequality.

Finally, we estimate jb( ;  ;A

1=2

v

m

)j. By Propositions 2.13 and 2.14,

jb( ;  ;A

1=2

v

m

j �

Z




j j jr j A

1=2

v

m

j dx

� C k'k

L

1

(�
)

�

Z




jr j

2

dist(x; �
) dx

�

1=2

�

(

Z




jA

1=2

v

m

j

2

dx

dist(x; �
)

)

1=2

(4.9)

� Ck'k

L

1

(�
)

k'k

L

2

(�
)

jA

3=4

v

m

j

2

�

�

8

jA

3=4

v

m

j

2

2

+

C

�

k'k

2

L

1

(�
)

k'k

2

L

2

(�
)

:

Putting (4.4)-(4.9) together, we obtain

d

dt

jA

1=4

v

m

j

2

2

� jA

1=4

v

m

j

2

2

�

C

�

jA

1=2

v

m

j

2

2

+

C

�

k'k

2

L

1

(�
)

�

+

C

�

(

jf j

2

�

1=4

1

+ C�

p

" jF j

2

)

2

+

C

�

k'k

2

L

1

(�
)

k'k

2

L

2

(�
)

:
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It then follows from Gronwall's inequality that

jA

1=4

v

m

(t)j

2

2

� exp

�

Z

t

s

f

C

�

k'k

2

L

1

(�
)

+

C

�

jA

1=2

v

m

j

2

2

g d�

�

�

(

jA

1=4

v

m

(s)j

2

2

+

C

�

"

jf j

2

�

1=4

1

+ C�

p

"jF j

2

#

2

(t� s) (4.10)

+

C

�

k'k

2

L

1

(�
)

k'k

2

L

2

(�
)

(t� s)

)

:

We are now in a position to prove

Theorem 4.11 Let f; v

0

2 H and let v(t) be the unique solution of (3.1) given in

Theorem 3.13. Suppose jv

0

j

2

�M . Then there exists a onstant C = C(�;
; '; f;M)

suh that

sup

t �

1

��

1

jA

1=4

v(t)j

2

� C:

Proof. It follows from (3.11)-(3.12) that

�

Z

t

s

jA

1=2

v

m

(�)j

2

2

d�

� jv

0

j

2

2

+

C

�

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

�

t� s+

1

��

1

�

:

Let t� s = 1=��

1

. Then

jf� 2 [s; t℄; jA

1=2

v

m

(�)j

2

> �gj

�

1

��

2

8

<

:

jv

0

j

2

2

+

C

�

2

�

1

"

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

#

2

9

=

;

:

This implies that, if we hoose

�

2

= 2�

1

(

jv

0

j

2

2

+

C

�

2

�

1

"

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

#)

;

then

jf� 2 [s; t℄; jA

1=2

v

m

(�)j

2

> �gj �

1

2�

1

�

:
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It follows that, in any interval of length 1=(��

1

), there exists � suh that

jA

1=2

v

m

(�)j

2

2

� �

2

= 2�

1

8

<

:

jv

0

j

2

2

+

C

�

2

�

1

"

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

#

2

9

=

;

:

This, together with (4.10), (3.12) and jA

1=4

v

m

(�)j

2

� jA

1=2

v

m

(�)j

2

=�

1=4

1

, gives

sup

t�1=(��

1

)

jA

1=4

v

m

(t)j

2

2

� exp

 

jv

0

j

2

2

�

2

+

C

�

2

�

1

k'k

2

L

1

(�
)

+

C

�

4

�

1

"

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

#

2

1

A

�

8

<

:

2

q

�

1

jv

0

j

2

+

C

�

2

p

�

1

"

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

j'j

2

L

1

(�
)

#

2

+

C

�

2

�

1

"

jf j

2

�

1=4

1

+

�

"

k'k

L

2

(�
)

#

2

+

C

�

2

�

1

k'k

2

L

1

(�
)

k'k

2

L

2

(�
)

9

=

;

where we also used jF j

2

� Ck'k

L

2

(�
)

="

3=2

(Proposition 2.16). Thus we have shown

that, if jv

0

j

2

�M , then

sup

t � 1=(��

1

)

jA

1=4

v

m

(t)j

2

� C(�;
; '; f;M):

Now, suppose v

m

j

! v weakly in L

2

((0; T );V ). Sine V ,! D(A

1=4

) is ompat,

we onlude that there exists a subsequene, still denoted by fv

m

j

g, suh that v

m

j

! v

in L

2

((0; T );D(A

1=4

)) (see [5, Lemma 8.4℄). Thus there exists another subsequene,

still denoted by fv

m

j

g, so that v

m

j

(t)! v(t) in D(A

1=4

) for a.e. t. It follows that

sup

t � 1=(��

1

)

jA

1=4

v(t)j

2

� (�;
; '; f;M):

Remark. For any t

0

2 (0;

1

��

1

), one may estimate

sup

t

0

�t�

1

��

1

jA

1=4

v(t)j

2

by integrating (4.10) with respet to s over [t

0

; t℄. We omit the details.
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5 The Existene and Dimension of the Universal

Attrator

Let v(t) = S(t)v

0

denote the solution of (3.1). We say that A � H is a universal

attrator for the semigroup fS(t) g

t�0

if A is a ompat invariant set (S(t)A = A)

whih attrats the bounded sets of H.

Theorem 5.1 The semigroup S(t) : H ! H possesses a universal attrator A.

Proof. To show that S(t) has a universal attrator, it suÆes to �nd a ompat set

B whih absorbs bounded sets of H. Then the universal attrator is given by

A =

\

t�0

S(t)B:

(see [16, Chapter 1℄).

Let B = fu 2 D(A

1=4

); jA

1=4

uj

2

� �g where � > 0 is to be determined later.

Clearly B is ompat in H. Let v

0

2 H and jv

0

j

2

� M . By (3.11) and a limiting

argument,

jS(t)v

0

j

2

�

C

�

p

�

1

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

= N

if t � t

0

(�;
; '; f;M)). It then follows from Theorem 4.11 that, if t � t

0

+

1

��

1

, then

jA

1=4

S(t)v

0

j

2

� C(�;
; '; f; N):

Finally, let � = C(�;
; '; f; N). We see that S(t)v

0

2 B if t � t

0

+

1

��

1

. Hene,

B absorbs any bounded set of H.

To estimate the dimension of the universal attrator A, we shall apply the abstrat

mahinery in [16, Chapter 5℄. To this end, we �rst need to show that S(t) is uniformly

di�erentiable on bounded subsets of H.

Let

Rv = B( ; v) +B(v;  ): (5.2)
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Then the �rst variation equation of (3.1) an be written in the form

8

>

>

<

>

>

:

dU

dt

+ �AU +RU +B(S(t)v

0

; U) +B(U; S(t)v

0

) = 0

U(0) = � 2 H:

(5.3)

Note that, by (3.6)-(3.8).

jhRv; vij �

�

4

kvk

2

for v 2 V . (5.4)

Using (5.4) and the standard energy estimates, we may show that the linear

equation (5.3) has a unique solution U 2 L

2

((0; T );V ) \ C([0; T ℄;H) for any T > 0.

For eah t � 0; v

0

2 H, we de�ne the linear operator L(t; v

0

) : H ! H by

L(t; v

0

) � � = U(t) (5.5)

where U(t) is the solution of (5.3).

Theorem 5.6 Let X be a bounded subset of H. Then

(i) sup

v

0

2X

kL(t; v

0

)k

L(H)

� Cexp(

�

sup

v

0

2X

Z

t

0

kS(�)v

0

k

2

d�);

(ii) for any Æ > 0,

sup

u

0

; v

0

2 X

0 < ju

0

� v

0

j < Æ

jS(t)v

0

� S(t)u

0

� L(t; u

0

) � (v

0

� u

0

)j

2

jv

0

� u

0

j

2

� C

�

Æ exp

�



�

sup

u

0

2X

Z

t

0

ks(�)u

0

k

2

d�

�

:

In partiular, S(t) is uniformly di�erentiable on X.

We remark that, with (5.4), Theorem 5.6 follows from the usual energy estimates

exatly as in the lassial ase ' = 0 (see [16, Setion 6.8℄).

Our next result gives the estimate for the dimension of the attrator. Reall that

G, the Grashof number and Re, the Reynolds number are de�ned in (1.10).

Theorem 5.7 The Hausdor� and fratal dimensions of the universal attrator A for

the semigroup S(t) are bounded by



1

G+ 

2

Re

3=2

+ 1
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where 

1

and 

2

are sale invariant onstants depending on 
.

Proof. With Theorems 5.1 and 5.6 at our disposal we may apply the abstrat frame-

work in [16, Chapter 5℄.

For �

1

; �

2

; � � � ; �

m

2 H, let U

j

(t) = L(t; v

0

) � �

j

where v

0

2 H. Let Q

m

(�) denote

the projetor from H to spanfU

j

(�) : j = 1; 2; : : : ; mg. Then

kU

1

(t) ^ � � � ^ U

m

(t)k

�

m

(H)

= k�

1

^ : : : ^ �

m

k

�

m

(H)

exp

Z

t

0

Tr F

0

(S(�)v

0

) ÆQ

m

(�) d�

where F

0

(S(�)v

0

) is the Fr�ehet di�erential of the operator F = ��A�R�B(�; �) +

f �B( ;  ) at S(�)v

0

:

F

0

(S(�)v

0

) = ��A� R� B(S(�)v

0

; �)� B(�; S(�)v

0

): (5.8)

Let f'

j

(�); j = 1; 2; : : : ; mg be an orthonormal basis for spanfU

j

(�); j =

1; 2; : : : ; mg. Sine U

j

2 L

2

(0; T ;V ); U

j

(�) 2 V for a.e. � . Hene '

j

(�) 2 V for a.e.

� .

Note that

TrF

0

(S(�)v

0

) ÆQ

m

(�)

=

m

X

j=1

hF

0

(S(�)v

0

)'

j

(�); '

j

(�)i

=

m

X

j=1

�

� �k'

j

(�)k

2

� hR'

j

(�); '

j

(�)i

�b(S(�)v

0

; '

j

(�); '

j

(�))� b('

j

(�); S(�)v

0

; '

j

(�)

�

� �

3�

4

m

X

j=1

k'

j

(�)k

2

+

m

X

j=1

jb('

j

(�); S(�)v

0

; '

j

(�))j

where we used (5.4) in the inequality. The seond term above is bounded by

Z




m

X

j=1

j'

j

(�)j

2

jrS(�)v

0

j dx � kS(�)v

0

k j�(�; �)j

2

where

�(�; x) =

m

X

j=1

j'

j

(�; x)j

2

:
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By the vetor valued Lieb-Thirring inequality,

j�(�; �)j

2

2

� C

m

X

j=1

k'

j

(�)k

2

:

It follows that

TrF

0

(S(�)v

0

) ÆQ

m

(�) � �

3�

4

m

X

j=1

k'

j

(�)k

2

+ CkS(�)v

0

k

0

�

m

X

j=1

k'

j

(�)k

2

1

A

1=2

� �

�

2

m

X

j=1

k'

j

(�)k

2

+

C

�

kS(�)v

0

k

2

� �

�

2

m

X

j=1

�

j

+

C

�

kS(�)v

0

k

2

� �

��

2j
j

m

2

+

C

�

kS(�)v

0

k

2

where we have used the variational priniple in the third inequality and

m

X

j=1

�

j

�

�m

2

=j
j in the fourth (see [8℄).

Now, let

q

m

(t) = sup

v

0

2 A

sup

�

j

2 H

j = 1; 2; � � � ;m

�

1

t

Z

t

0

Tr F

0

(S(�)v

0

) ÆQ

m

(�) d�

�

:

Then

q

m

(t) � �

��

2j
j

m

2

+

C

�

sup

v

0

2 A

1

t

Z

t

0

kS(�)v

0

k

2

d�:

Hene,

q

m

� lim sup

t!1

q

m

(t) � �

��

2j
j

m

2

+

C

�

�  (5.9)

where

 = lim sup

t!1

sup

v

0

2 A

1

t

Z

t

0

kS(�)v

0

k

2

d�: (5.10)

It follows from (5.9) and the general result in [16, Chapter 4℄ that the Hausdor�

and fratal dimensions of the universal attrator are A bounded by

Cj
j

1=2

�



1=2

+ 1:

It remains to estimate  de�ned by (5.10).
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By (3.12) and a limiting argument,

�

Z

t

0

kS(�)v

0

k

2

d� � jv

0

j

2

2

+

C t

�

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

where " is de�ned in (3.7). It follows that

 �

C

�

2

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

2

:

Hene,

dimA �

Cj
j

1=2

�

2

(

jf j

2

p

�

1

+

�

p

"

k'k

L

2

(�
)

+

p

" j�
j

1=2

k'k

2

L

1

(�
)

)

+ 1:

Sine �

1

� 1=j
j, j�
j � j
j

1=2

and k'k

L

2

(�
)

� j�
j

1=2

k'k

L

1

(�
)

, we have

dimA �

Cjf j

2

�

2

�

1

+

1

p

"

�

Ck'k

L

1

(�
)

��

3=4

1

+

p

" �

Ck'k

2

L

1

(�
)

�

2

�

3=4

1

+ 1

where the onstants depend on the sale-invariant quantities j
j

1=2

=j�
j and (j
j�

1

)

�1

.

Finally, by (3.7),

p

" �

C

p

�

k'k

1=2

L

1

(�
)

and

1

p

"

� C

8

<

:

k'k

1=2

L

1

(�
)

p

�

+ �

1=4

1

9

=

;

:

We obtain

dimA �

Cjf j

2

�

2

�

1

+

Ck'k

3=2

L

1

(�
)

�

3=2

�

3=4

1

+

Ck'k

L

1

(�
)

��

1=2

1

+ 1

= C G+ C Re

3=2

+ C Re + 1

� 

1

G+ 

2

Re

3=2

+ 1

where G =

jf j

2

�

2

�

1

and Re =

k'k

L

1

(�
)

��

1=2

1

.

The proof of the theorem is now �nished.

A Appendix: The Stokes System in

Two-dimensional Lipshitz Domains

In this appendix, we sketh the proof of Theorem 2.3. We will only indiate the

modi�ations whih are needed to arry over the arguments of Fabes, Kenig and

Verhota [6℄ and Shen [12℄ to the two-dimensional ase.
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Let �(x) = (�

jk

(x))

1�j;k�2

be a matrix of fundamental solutions and P (x) =

(P

1

(x); P

2

(x)) the orresponding pressure vetor for the Stokes system in R

2

where

8

>

>

>

>

<

>

>

>

>

:

�

jk

(x) =

1

4�

(

�Æ

jk

log jxj+

x

j

x

k

jxj

2

)

P

i

(x) =

1

2�

�

x

i

jxj

:

(A.1)

Following [6℄, we use the method of layer potentials to solve the L

2

-Dirihlet problem.

The ompliation for the two-dimensional ase omes from the fat that j�(x)j ! 1

as jxj ! 1. The problem an be solved easily by �rst restriting the density funtion

to the subspae

L

2

0

(�
) =

�

f 2 L

2

(�
);

Z

�


f d� = 0

�

:

Given f 2 L

2

(�
), we de�ne the single layer potential

S(f)(x) =

Z

�


�(x�Q)f(Q) d�(Q) (A.2)

and the orresponding pressure

q(x) =

Z

�


P (x�Q) � f(Q) d�(Q): (A.3)

Consider the onormal derivative on �


�u

��(Q)

=

�u

�n(Q)

� q(Q)n(Q) (A.4)

where n(Q) always denotes the outward unit normal to �
 at Q.

Let 


+

= 
 and 


�

= (
)



. If u = S(f), then

�u

�

��(Q)

=

�

�

1

2

I +K

�

f(Q) (A.5)

where � indiate the nontangential limits taken from 


�

respetively, and K is a

bounded singular integral operator on L

p

(�
), 1 < p <1.

For f 2 L

2

(�
), we de�ne the double-layer potential

u(x) = Kf(x) =

Z

�


�

��(Q)

f�(x�Q)gf(Q) d�(Q): (A.6)
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Then

u

�

(Q) =

�

�

1

2

I +K

�

�

f(Q) (A.7)

where K

�

is the adjoint operator of K in (A.5).

Let R denote the orthogonal omplement to the kernel of �

1

2

I +K. To show the

existene of solutions to the L

2

-Dirihlet problem, it suÆes to prove that

�

1

2

I +K

�

: R! L

2

n

(�
) =

�

f 2 L

2

(�
);

Z

�


f � n d� = 0

�

is invertible. By duality, it is enough to show that �

1

2

I+K is invertible from L

2

n

(�
)

to a subspae of L

2

(�
) of odimension one.

Proposition A.8 The operator �

1

2

I +K : L

2

n

(�
)! L

2

(�
) is one-to-one.

Proof. Suppose f 2 L

2

n

(�
) and

�

�

1

2

I +K

�

f = 0. Let u = S(f) be the single

layer potential de�ned by (A.2). Then

�u

�

��

=

�

�

1

2

I +K

�

f = 0 a.e. on �
.

Sine f =

�u

+

��

�

�u

�

��

and

Z

�


�u

+

��

d� = 0;

we obtain

Z

�


f d� = 0:

This implies that

u(x) =

Z

�


f�(x�Q)� �(x)gf(Q) d�(Q)! 0 as jxj ! 1. (A.9)

It then follows from the divergene theorem and a limiting argument that

Z




�

jru(x)j

2

dx = �

Z

�


�u

�

��

u d� = 0:

Hene u = onstant in 


�

. But u(x) ! 0 as jxj ! 1, thus, u � 0 in 


�

. The rest

of the proof is the same as in [6, Lemma 2.1℄
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Proposition A.10 The operator �

1

2

I +K : L

2

(�
)! L

2

(�
) has a losed range.

Proof. It is not hard to hek that the formulas (1.2)-(1.7) in [6℄ hold when d = 2

exept

�

Z




�

jruj

2

=

Z

�


�u

�

��

u d�; (A.11)

if u = S(f) and f 2 L

2

(�
). As we see in the proof of Proposition A.8, (A.11) holds

if we assume f 2 L

2

0

(�
). Thus, by Lemma 1.17 in [6℄, if f 2 L

2

0

(�
),

kfk

L

2

(�
)

�











�u

+

��











L

2

(�
)

+











�u

�

��











L

2

(�
)

� C

8

<

:











�u

�

��











L

2

(�
)

+

�

�

�

�

Z

�


u d�

�

�

�

�

+ jq(0)j

9

=

;

= C

(









�

�

1

2

I +K

�

f









L

2

(�
)

+

�

�

�

�

Z

�


u d�

�

�

�

�

+ jq(0)j

)

where we have assumed 0 2 
. This, together with the fat that L

2

0

(�
) is a subspae

of L

2

(�
) of odimension two, implies that the range of �

1

2

I+K is losed, by a rather

standard argument.

We are now ready to give the

Proof of Theorem 2.3. Given ' 2 L

2

n

(�
), the existene and uniqueness of the solu-

tion (u; q) satisfying (2.2) and (u)

�

2 L

2

(�
) follow from Propositions A.8 , A.10 and

an approximation argument as in [6℄. We remark that the uniqueness also follows

from the estimate

Z




j

juj

2

dx � C

Z

�


j

juj

2

d� (A.12)

where f


j

g is a sequene of smooth domains approximating 
. (A.12) an be estab-

lished by using Rellih identities in a manner similar to the proof of Lemma 5.1.14 in

[11℄.

The proof of the square funtion estimates,

Z




jru(x)j

2

dist(x; �
) dx +

Z




jq(x)j

2

dist(x; �
)dx � C

Z

�


juj

2

d�;

is the same as in the higher dimensional ase (see e.g. [2℄).

30



Finally we show

sup

x 2 


ju(x)j � Ck'k

L

1

(�
)

: (A.13)

The estimate

sup

x 2 


jru(x)j dist(x; �
) � Ck'k

L

1

(�
)

follows easily from (A.13) and the standard interior estimates.

Sine (A.13) is dilation invariant, we may assume diam
 = 1. Given z 2 
, we

wish to show that

ju(z)j � Ck'k

L

1

(�
)

: (A.14)

Let r = dist(z; �
). We introdue another matrix of fundamental solutions

e

�(x) =

(

e

�

jk

(x))

1�j;k�2

where

e

�

jk

(x) =

1

4�

(

�Æ

jk

log

 

jxj

r

!

+

x

j

x

k

jxj

2

)

: (A.15)

We onstrut the matrix Green's funtion G(x; y) and the orresponding pressure

vetor (�

x

(y)) where

8

>

<

>

:

G(x; y) =

e

�(x� y)� v

x

(y)

�

x

(y) = P (x� y)� q

x

(y);

(A.16)

and, for eah x 2 
, (v

x

(y); q

x

(y)) is the matrix-valued solution to the L

2

Dirihlet

problem (2.2) with boundary data v

x

(Q) =

e

�(x�Q) on �
.

Sine

u(x) =

Z

�


�G

��(Q)

(x;Q)'(Q) d�(Q); for x 2 
,

and ' 2 L

2

n

(�
), (A.14) follows from

Z

�


�

�

�

�

�

�G

��(Q)

(z; Q)� �

z

(x

0

)n(Q)

�

�

�

�

�

d�(Q) � C (A.17)

for some x

0

2 
.

Let Q

0

2 �
 suh that jz �Q

0

j = dist(z; �
) = r. The proof of

Z

jQ�Q

0

j � 30r

Q 2 �


�

�

�

�

�

�G

��(Q)

(z; Q)� �

z

(x

0

)n(Q)

�

�

�

�

�

d�(Q) � C (A.18)
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is exatly the same as in [12, p.807℄.

By the proof of Lemma 1.7 in [12℄, we have

Z

R � jQ�Q

0

j � 2R

Q 2 �


�

�

�

�

�

�G

��(Q)

(z; Q)� �

z

(x

0

)n(Q)

�

�

�

�

�

d�(Q) � C

�

r

R

�

1=2

(A.19)

for R � 30r if we an show

Z

jQ�Q

0

j � 10r

Q 2 �


j(G(z; �))

�

(Q)j

2

d�(Q) � C r: (A.20)

(A.17) follows easily from (A.18)-(A.19) by summation.

To see (A.20), we apply the L

2

-estimate on the domain 
 n B(Q

0

; 4r) = fx 2


; jx�Q

0

j > 4rg. We obtain

Z

jQ�Q

0

j � 10r

Q 2 �


j(G(z; �))

�

(Q)j

2

d�(Q) � C

Z


\�B(Q

0

;4r)

jG(z; Q)j

2

d�(Q) (A.21)

� C

Z


\�B(Q

0

;4r)

j

e

�(z �Q)j

2

d�(Q) + C

Z


\�B(Q

0

;4r)

jv

z

(Q)j

2

d�(Q)

sine G(z; �) = 0 on �
. By (A.16),

Z


\�B(Q

0

;4r)

j

e

�(z �Q)j

2

d�(Q) � C r:

Using jv

z

(Q)j = j

e

�(z �Q)j � C for Q 2 �
 \ �B(Q

0

; 4r), we get

Z


\�B(Q

0

;4r)

jv

z

(Q)j

2

d�(Q) � C r + C r

2

Z


\�B(Q

0

;4r)

jr

Q

v

z

(Q)j

2

d�(Q)

� C r + C r

2

Z

�


j(rv

z

)

�

j

2

d�

� C r + C r

2

Z

�


jrv

z

j

2

d�

� C r + C r

2

Z

�


jr

tan

v

z

j

2

d�

where r

tan

v

z

denotes the tangential derivative of v

z

on �
 and the last inequality

follows from Lemma 1.10 (i) and Lemma 1.16 (i) in [6℄.
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Sine v

z

(Q) =

e

�(z �Q) on �
, we onlude that

Z

jQ�Q

0

j � 10r

Q 2 �


j(G(z; �))

�

(Q)j

2

d�(Q) � C r + C r

2

Z

�


jr

tan

v

z

j

2

d�(Q)

� C r + C r

2

Z

�


jr

Q

e

�(z �Q)j

2

d�(Q) � C r + C r

2

Z

1

 r

dt

t

2

� C r:

(A.20) is then proved. The proof of Theorem 2.1 is omplete.
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