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Abstract

A formula is given for recovering the boundary values of the coeÆ-

cient  of an elliptic operator, divr, from the Dirichlet to Neumann

map. The main point is that one may recover  without any a priori

smoothness assumptions. The formula allows one to recover the value

of  pointwise.

Let 
 � R
n
; n � 2, be a bounded open set with Lipschitz boundary

and let  : �
! R satisfy ��1 � (x) � � for some � > 0. Let L = div r

be an elliptic operator. We let � : H
1=2(@
) ! H

�1=2(@
) denote the

Dirichlet to Neumann map. Thus if u solves the Dirichlet problem,

(
div  ru = 0; in 


u = f; on @
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then �f = 
@u

@�
. The purpose of this note is to show that we can recover

j@
 from � under minimal smoothness hypotheses on .

Since we will be working with nonsmooth , the equation div ru = 0

will be interpreted in the weak sense and we de�ne �f as an element of the

dual of H1=2(@
) by the relation

Z
@


��f =

Z


ru � r�

where u is the solution of the Dirichlet problem and � 2 H
1(
) satis�es

�j@
 = �. Note that we are abusing notation by writing the bilinear pairing

between H1=2(@
) and H�1=2(@
) as an integral.

Much is known about the recovery of j@
 from � . We recall some of

the previous work. In 1984, Kohn and Vogelius [4] showed that if �1
= �2

,

then 1 � 2 vanishes to in�nite order at the boundary provided 1 and 2

are C1(�
). Their argument depended on L2-Sobolev embedding and, as a

consequence, they need to assume that 1�2 has n=2 \extra derivatives" in

order to obtain that 1 � 2 vanishes at the boundary. When  and @
 are

C
1, Sylvester and Uhlmann [10] show how to recover all derivatives of  from

the pseudo-di�erential operator �. By a limiting argument, they establish

that if �1
= �2

, then 1 = 2 provided 1 and 2 are continuous. However,

the limiting behavior of the operator as the domain varies is less clear and

thus they do not consider relaxing the regularity assumption on the domain.

Finally, G. Alessandrini [1] has obtained uniqueness at the boundary when

the coeÆcient is in the Sobolev space W 1;p, for some p > n, and the domain

is Lipschitz. Recently, Nachman [5] has given a constructive method for
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recovering  from � when the coeÆcient lies in W 1;p, p > n.

In this note, we will show how to recover j@
 when @
 is Lipschitz and,

roughly speaking,  is continuous at a.e. boundary point. The precise hy-

pothesis will be given in (H1) below. For now, we observe that our hypothesis

includes  which lie in the Sobolev space W 1;1(
), continuous  and certain

 which are piecewise continuous (we must have some control on the bound-

aries of the subregions on which  is continuous). Thus our result implies

results on recovering  described above and also recovers discontinuous 

which had not been treated earlier.

This result is of interest for several reasons. Recovering  on the boundary

is a �rst step in more general results where one wants to �nd  in the interior

from the Dirichlet to Neumann map. The result of this paper shows that the

boundary identi�ability is not an impediment to recovering discontinuous 

in the interior. However, the interior identi�ability remains a hard problem.

See [2] for recent progress on the interior problem in two dimensions. The

boundary identi�abilty result also arises as in the so-called \layer-stripping"

method for solving the inverse conductivity problem (see [7, 9]). Finally, the

method of this paper is quite exible since it only relies on the standard H1-

estimates for elliptic equations. Recently, R. Robertson has adapted these

methods to obtain boundary identi�ability results for an equation of elasticity

involving additional terms which represent residual stress [6].

We begin our development by stating the hypothesis on @
. We assume

that @
 is a Lipschitz domain in the sense that @
 is locally the graph of

3



a Lipschitz function. Thus for each P 2 @
, there is a coordinate system

(x0; xn) on R
n�1�R, isometric to the standard one, and a Lipschitz function

� : Rn�1 ! R so that for some � > 0,

B(P; �) \ fxn > �(x0)g = 
 \B(P; �)

and

B(P; �) \ fxn = �(x0)g = @
 \B(P; �):

We let F denote the map F (x0; xn) = (x0; �(x0) + xn). We choose r > 0

and assume the coordinates are �xed so that F (B(0; 2r)) � B(P; �). In

the remainder of this note, we �x P and show how to recover  Æ F in

B(0; r) \ fxn = 0g.

We next state our hypothesis on .

H1 For each P 2 @
, there exist a representative of , a coordinate system,

a map F and a ball B(0; r) as in the de�nition of Lipschitz domain so that

lim
xn!0+

(F (x0; xn)) = (F (x0; 0)); a.e. x0; jx
0
j < r: (1)

The formula for  in the theorem below only depends on  as an element

of L1 but altering  on a set of measure zero may a�ect the truth of (H1).

Thus, we emphasize that (H1) need only hold for some representative of 

in order to obtain our Theorem. In fact, the representative for which (H1)

holds may vary from point to point. We recall that if  is in W 1;1(
), then

it is known that  has a representative for which (F (x0; �)) is absolutely

continuous for a.e x0 and thus  satis�es (H1). We can now state our main

result.
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Theorem. Let 
 be a Lipschitz domain and let  be a function satisfying

� � (x) � �
�1. Assume the condition (H1). Then for a.e. P 2 @
, there

exists a family of functions fN so that

lim
N!1

Z
@


�
fN�fN = (P ):

Before proceeding with the proof, we observe that if u satis�es divru =

0, then v = u Æ F satis�es div A(x)rv = 0 in ~


A(x0; xn) = (F (x0; xn))(DF
�1(x0))t(DF�1(x0));

and ~
 = F
�1(
). Note that the map F is biLipschitz in all of Rn.

Our next step is to describe the points P for which we can recover (P ).

Again, we state the condition in each coordinate system.

H2 The point x0, is a Lebesgue point for A(�; 0) and DF�1(�) and moreover

that

lim
r!0+

1

r
n�1

Z
jx0�y0j<r

jA(x0; 0)� A(y0; 0)j2 dy0 = 0: (2)

Since A and DF�1 are bounded, it is well known that (H2) holds for a.e.

x
0.

We also need some control on the rate at which  attains its boundary

values. To state this condition, we de�ne auxiliary functions for � small and

positive by


�

�
(x0) = sup

0<xn<�

j(F (x0; 0))� (F (x0; xn))j; jx
0
j � 3r=2:

The assumption (H1) on  implies that �
�
decreases to 0 a.e. as � ! 0+.

Since  is bounded, the monotone convergence theorem implies �
�
! 0 in
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L
p(fx0 : jx0j < 3r=2g); p < 1. We de�ne the Hardy-Littlewood maximal

operator on Rn�1 by

M(f)(x0) = sup
s>0

s
1�n

Z
jx0�y0j<s

jf(y0)j dy0:

If we extend 
�

�
to be zero outside B(0; 3r=2), then our observation that


�

�
! 0 in every Lp-space, p <1, the Lp- mapping properties of the maximal

operator [8] and the monotonicity in � of M(�2
�
) imply that for a.e. x0,

M(�2
�
)(x0)! 0: (3)

We let � : R! [0; 1] be a smooth function which satis�es �(t) = 1; jtj �

1=2, and �(t) = 0; jtj > 1. We choose � 2 R
n a constant vector for which

A(x0; 0)� �� = A(x0; 0)en �en and A(x
0
; 0)� �en = 0. Note that these condition

depend only on DF�1 and not the value of . Set � = DF
�1(x0)(i� � en).

Then, this vector satis�es � � � = 0 and �� � � = jDF�1(x0)enj
2 = 2(1 +

jr�(x0)j2). We set

vN(y) = �(N1=2
jy
0
� x

0
j)�(N1=2

yn)e
N(i��en)�(y�(x

0;0))
: (4)

Lemma 1. Suppose that x0; A and  satisfy (H1), (H2) and (3). Then

Z
~

ArvN �r�vN dy = N

3�n

2 (F (x0))(1+jr�(x0)j2)

Z
Rn�1

�(jx0j)2dx0+o(N
3�n

2 ):
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Proof. We assume that x0 = 0. We set  (y) = �(yn)�(jy
0j), we use the

de�nition of A and � and obtainZ
~

A(y)rvN(y) � r�vN(y) dy

= N
2

Z
~

(F (0))� � �� (N1=2

y)2e�2Nyn
dy

+N
2

Z
~

(A(y)� A(0))(i�� en)(�i�� en)e

�2Nyn
 (N1=2

y)2 dy

+N

Z
~

e
�2Nyn

A(y)(r )(N1=2
y) � (r )(N1=2

y) dy

+N
3=2

Z
~

e
�2Nyn

A(y)(�en) � (r )(N
1=2
y) (N1=2

y) dy:

(5)

It is easy to see that the �rst term on the right of (5) satis�es

N
2

Z
~

(F (0))� � �� (N1=2

y)2e�2Nyn
dy

= (F (0))(1 + jr�(0)j2)N
3�n

2

Z
Rn�1

�(jy0j)2 dy0 +O(exp(�1
2
N

1=2)N
3�n

2 )

(6)

which gives the main term in the conclusion of the Lemma. It is also easy to

show that the last two terms in (5) are O(N
2�n

2 ) and O(N
1�n

2 ), respectively,

and thus each is better than the allowed error term of o(N
3�n

2 ) as N !1.

To estimate the second term, we write

N
2j

Z
~

(A(y)� A(0))(i�� en) � (�i�� en) (N

1=2jyj)2e�2Nyn
dyj

� 1
2
N ji�� enj

2

Z
Rn�1

jA(y0; 0)� A(0)j�(N1=2jy0j)2 dy0

+N
2ji�� enj

2kDF�1k2
1

Z
~

j(F (y0; 0))� (F (y0; yn))j

�  (N1=2jyj)2e�2Nyn
dy:

(7)
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The �rst term on the right of (7) is o(N
3�n

2 ) by (2). To estimate the second

term on the right of (7), we choose � > 0 and split the integral into regions

where xn > � and xn < � givingZ
~

j(F (y0; 0))� (F (y0; yn))j  (N1=2jyj)2e�2Nyn

dy

� CN

�1�n

2 (M(�
�
)(0) + 2kk1e

�2N�):

Since � > 0 and 0 satis�es (3), this gives that the second term is also o(N
3�n

2 )

as N !1. 2

Our next step is to show that the functions vN given in (4) approximate

solutions. This is done in the obvious way: We compute div ArvN and

show that, in the norm of H�1(
), this is o(N
3�n

4 ). Then standard energy

estimates imply that the solution wN of(
div ArwN = div ArvN ; in ~


wN = 0; on @ ~


satis�es

Z
jrwN j

2 = o(N
3�n

2 ).

The one novel point in this argument is that we use Hardy's inequality:

Z
~


u(x)2

Æ(x)
dx � C

Z
~

jru(x)j2 dx; u 2 H

1
0 (
~
): (8)

where Æ(x) denotes the distance between and x and @ ~
. This estimate holds,

at least, in biLipschitz images of Lipschitz domains (see [3][p.26]). This

estimate will be used to obtain optimal estimates for elements in H�1(
) of

the form u!

Z
fu when f is concentrated near the boundary.

Lemma 2. Let vN be as de�ned in (4) and let wN solve

div ArwN = div ArvN ; wN 2 H
1
0 (
);
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then Z
jrwN j

2 = o(N
3�n

2 ):

Proof. Again, we assume that x0 = 0. We will norm H
1
0 (
) by kuk

2
H1
0
(
)

=Z


jruj2 dx and we let H�1(
) have the standard dual norm. We recall the

de�nition of A(x) after the statement of the theorem, let L0 = divA(0)r, set

E(x) = exp(N(i�� en) � x) and  (x) = �(N1=2jx0j)�(N1=2
xn) (note that this

is slightly di�erent than the  de�ned in Lemma 1). With these notations

we write
LvN = L0( E) + div (A(x)� A(0))r( E)

= 2A(0)r � rE + EL0 

+ div (A(x)� A(0))r( E)

= I + II + III:

According to the Lax-Milgram lemma, we have kwNkH1
0
(
) � CkLvNkH�1(
).

Thus we need to show

kLvNkH�1(
) = o(N
3�n

4 ):

In order to carry the estimates, let � be in H1
0 (
) and consider each of

the terms I, II and III paired with �. To estimate I(�), we apply Cauchy-

Schwarz, Hardy's inequality and elementary estimates for rE and r to
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obtain

I(�) = 2

Z
A(0)r � rE�

�

 Z
�(y)2

Æ(y)2

!1=2

N
3=2

 Z
jy0j<N�1=2

e
�2Nyn � Æ(y)2

!1=2

� Ck�kH1
0
N

1�n

4 :

The term II is also easy to estimate using Hardy's inequality and has the

bound

II(�) � Ck�kH1
0
((0))N

�1�n

4 :

Finally, for III we write

III(�) = �

Z
~

(A(y)� A(0))r( E) � r� dy

� CN

 Z
jy0j<N�1=2

jA(y)� A(0)j2e�2Nyn
dy

!1=2

kr�kL2

� Ckr�kL2

2
4
N

1=2

 Z
jy0j<N�1=2

jA(y0; 0)� A(0)j2 dy0
!1=2

+NkDF�1k2
1

 Z
jy0j<N�1=2

yn>0

j(F (y0; 0)� (F (y0; yn))j
2
e
�2Nyn

dy

!1=2
3
5
:

(9)

Using (2), (3) and an argument similar to Lemma 1, each of the terms on

the right-hand side of the last inequality of (9) is o(N
3�n

4 ). Thus we obtain

the desired estimate that III(�) = o(N
3�n

4 )kr�kL2. 2

Given the two Lemmas, the proof of our theorem is easy.

Proof of Theorem. Suppose that P 2 @
, let (x0; xn) and F be as in
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the de�nition of a Lipschitz domain and, without loss of generality, as-

sume F (0) = P with x
0 = 0 satisfying (H2) and (3). We let I = (1 +

jr�(0)j2)

Z
Rn�1

�(jy0j)2 dy0 where � is as in (4) and let

fN = vN Æ F
�1
I
�1=2

N

3�n

4 :

If uN solves div ruN = 0; uN j@
 = fN , then we have

Z
@


�
fN�fN =

Z


jruN j

2

=

Z
~

Ar�uN Æ F � ruN Æ F

=

Z
~

ArvN � r�vN + o(1)

= (F (0)) + o(1)

where vN is as in (4), the third equality is Lemma 2 and the fourth equality

is Lemma 1. 2
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