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Abstract

We consider the mixed problem for the Lamé system

Lu = 0 in Ω

u|D = fD on D
∂u

∂ρ
= fN on N

(∇u)∗ ∈ Lp(∂Ω)

in the class of bounded Lipschitz creased domains. Here D and N partition ∂Ω and
∂/∂ρ stands for the traction operator. We suppose the Dirichlet data fD has one
derivative in Lp(D) and the traction data fN is in Lp(N). For p in a small interval
containing 2, we find a unique solution to the mixed problem subject to the condition
that the non-tangential maximal function of the gradient of the solution is in Lp(∂Ω).

1 Preliminaries

The study of the Lamé system of elastostatics, equipped with various boundary con-
ditions (of Dirichlet, Neumann and Mixed type) occupies an important place in the
mathematical and engineering literature. A standard reference in this regard is [11].
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Subsequent efforts to increase the range of applicability of the mathematical theory
developed in this setting have led to the consideration of more general types of do-
mains, whose boundaries are allowed to contain irregularities. For example, in [5], B.
Dahlberg, C. Kenig and G. Verchota were able to establish the well-posedness of the
Dirichlet and Neumann problems for the Lamé system in arbitrary Lipschitz domains,
with L2 boundary data.

The aim of this note is to find a solution to the mixed problem for the Lamé system
in a certain class of Lipschitz domains. The class of domains we consider has been
introduced in the study of the mixed problem for the Laplacian in [1] (see also [12],
[14], and [19]). For the case of domains with isolated singularities (such as polygonal
and polyhedral domains), the reader is referred to, e.g., [9], [15], [16], and the references
therein.

Throughout this paper we will use the convention of summing over repeated indices.
Let u : Ω → Rn, u = (u1, . . . , un), denote a vector-valued function defined on a bounded
open set Ω ⊂ Rn. It is convenient to write the Lamé system as Lu = divσ(u), or

(Lu)i =
∂

∂xα
σi

α(u), i = 1, . . . , n. (1.1)

Above, σ(u) = (σi
α(u))i,α=1,...,n denotes the stress tensor, where

σi
α(u) := aij

αβ

∂uβ

∂xj
, (1.2)

whose norm is defined as |σ(u)|2 :=
∑n

i=1

∑n
α=1 |σi

α(u)|2. In the sequel, we shall
consider a family of stress tensors for which the coefficients aij

αβ in (1.2) are given by

aij
αβ = µδijδαβ + (λ+ µ− r)δiαδjβ + rδiβδjα, (1.3)

for some r ∈ R.
Notice that one may add a divergence free tensor to σ(u) without changing the

system of equations Lu = 0, where L is as in (1.1). Next, recall the strain tensor

ε(u) := (εij(u))i,j=1,...,n , εij(u) :=
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (1.4)

The constants λ and µ in (1.3) are the Lamé parameters, encoding the elastic
characteristics of the body Ω. As is standard, throughout the paper we will require
that

µ > 0, λ ≥ −2µ
n

and r ∈ [−µ, µ], (1.5)
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which ensures that the coefficient tensor given in (1.3) is semi-positive definite. That
is, aij

αβζ
α
i ζ

β
j ≥ 0 for every ζ = (ζβ

j )j,β=1,...,n ∈ Rn×n; compare with (1.15) below.
The value r = µ is of particular interest in applications and gives the standard

stress tensor in elasticity (see, e.g., [11]). The value r = µ(λ + µ)/(3µ + λ) gives rise
to the so-called pseudo-stress tensor and is of interest from the point of view of layer
potentials [5, 13].

Associated with the coefficients (1.3), consider the first-order boundary operator
∂/∂ρ defined by (

∂u

∂ρ

)α

:= σi
α(u)νi, α = 1, . . . , n. (1.6)

In this definition, ν is the outward unit normal vector to ∂Ω. When r = µ in (1.3), the
operator ∂/∂ρ is called the traction conormal.

The boundary value problem we consider in this paper is

Lu = 0 in Ω

u|D = fD on D
∂u

∂ρ
= fN on N

(∇u)∗ ∈ Lp(∂Ω).

(1.7)

We assume above that Ω ⊆ Rn, n ≥ 3, is a bounded Lipschitz domain with connected
boundary. This means that Ω is a bounded open set in Rn, ∂Ω is connected, and there
exists M > 0 such that, for each x ∈ ∂Ω one may find a coordinate system (obtained
by translating and rotating the standard coordinate system in Rn) say, (x′, xn) =
(x1, x

′′, xn) ∈ R×Rn−2×R, a cylinder Cr(x) := {(y′, yn) : |y′−x′| < r, |yn−xn| < 2Mr}
for some r > 0, and a Lipschitz function φ : Rn−1 → R with ‖∇φ‖∞ ≤M and so that

Cr(x) ∩ Ω = {(y′, yn) : yn > φ(y′)} ∩ Cr(x),

Cr(x) ∩ ∂Ω = {(y′, yn) : yn = φ(y′)} ∩ Cr(x).
(1.8)

Above ‖ · ‖∞ denotes the essential supremum norm. Suppose also that ∂Ω = D ∪ N
where D is relatively open in ∂Ω and N = ∂Ω \ D̄. Additional conditions will be
imposed below. Hereafter Lp(∂Ω), 1 < p < ∞, stands for the Lebesgue scale of p-
integrable functions with respect to the surface measure dS on ∂Ω. For a function w
defined in Ω, and any y ∈ ∂Ω, we define the non-tangential maximal function of w
evaluated at y by setting

w∗(y) := sup{|w(x)| : x ∈ Γ(y)}, (1.9)

where, for κ > 0 fixed, Γ(y) stands for the non-tangential approach region with vertex
at y ∈ ∂Ω given by
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Γ(y) := {x ∈ Ω : |x− y| < (1 + κ)dist(x, ∂Ω)}. (1.10)

The trace u|D is understood in the non-tangential sense, i.e.,

u|D(y) := lim
x→y

x∈Γ(y)

u(x), for a.e. y ∈ D. (1.11)

This will be tacitly assumed throughout the paper when dealing with boundary traces
of functions defined in Ω.

In (1.7) we take fN ∈ Lp(N) and fD ∈ Lp,1(D), where the latter space denotes the
Sobolev space of p integrable functions on D which have one (tangential) derivative
in Lp(D) and ∂/∂ρ is as in (1.6). The conditions on the coefficients (1.3) and (1.5)
guarantee that the operator L is elliptic as we shall see below.

Recall that a second order differential operator

(Lu)i := aij
αβ∂i∂ju

β, i ∈ {1, . . . , n}, (1.12)

is said to satisfy the Legendre-Hadamard ellipticity condition if there is a constant
γ > 0 such that

aij
αβξiξjη

αηβ ≥ γ|ξ|2|η|2, for all ξ = (ξi)i=1,...,n ∈ Rn, η = (ηα)α=1,...,n ∈ Rn.
(1.13)

It is easy to check that the coefficients introduced in (1.3) satisfy

aij
αβξiξjη

αηβ = µ|ξ|2|η|2 + (λ+ µ)(ξ · η)2. (1.14)

Thus (1.13) holds (for some γ > 0) whenever µ > 0 and λ+ 2µ > 0.
Going further, the operator L in (1.12) is said to be strongly elliptic provided that

there exists a constant γ > 0 such that

aij
αβζ

α
i ζ

β
j ≥ γ|ζ|2, for all ζ = (ζβ

j )j,β=1,...,n ∈ Rn×n. (1.15)

For the coefficients defined in (1.3), we have

aij
αβζ

α
i ζ

β
j ≥ (µ− |r|+ n(λ+ µ− r)−)|ζ|2, (1.16)

where x− := min {0, x} is the negative part of x. Thus if λ+µ−r ≥ 0 and −µ < r < µ,
the property (1.15) holds with constant γ = µ − |r|. The endpoint r = µ, when the
strong ellipticity condition (1.15) fails, corresponds to the interesting traction boundary
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condition. However, for −µ < r ≤ µ the following weaker ellipticity property holds.
There exists γ > 0 such that for every ζ = (ζα

i )i,α=1,...,n ∈ Rn×n,

aij
αβζ

i
αζ

j
β ≥ γ

∣∣∣∣ζ + ζt

2

∣∣∣∣2 , (1.17)

where the superscript t indicates transposition. Indeed,

aij
αβζ

i
αζ

j
β = µ|ζ|2 + (λ+ µ− r)(ζi

i )
2 + rζi

αζ
α
i

= 2r
∣∣∣∣ζ + ζt

2

∣∣∣∣2 + (µ− r)|ζ|2 + (λ+ µ− r)(ζi
i )

2 (1.18)

≥ (µ+ r)
∣∣∣∣ζ + ζt

2

∣∣∣∣2 + (µ− r)
∣∣∣∣ζ − ζt

2

∣∣∣∣2 + n(λ+ µ− r)−
∣∣∣∣ζ + ζt

2

∣∣∣∣2 .
For the mixed problem treated in this note, an additional feature of our domain is

important. Recall the sets N and D on which the Dirichlet and Neumann data are
specified. The additional requirement is that there is a constant m > 0 such that, if
x ∈ D̄ ∩ N̄ , there is a Lipschitz function ψ : Rn−2 → R and r > 0 satisfying

N ∩ Cr(x) = Cr(x) ∩ ∂Ω ∩ {(x1, x
′′, xn) : x1 ≥ ψ(x′′)},

D ∩ Cr(x) = Cr(x) ∩ ∂Ω ∩ {(x1, x
′′, xn) : x1 < ψ(x′′)},

(1.19)

and for which ∂φ
∂x1

> m, a.e. when x1 > ψ(x′′) and ∂φ
∂x1

< −m a.e. when x1 < ψ(x′′).
Here φ is as in (1.8). As ∂Ω is compact, we may find δ > 0 and a finite collection of
cylinders {C1, . . . , CN} which cover ∂Ω and such that in each coordinate cylinder we
have a unit vector hi with hi · ν > δ a.e. on Ci ∩ N and hi · ν < −δ a.e. on Ci ∩D.
Here ‘dot’ denotes the scalar product in Rn. Using a partition of unity, we may patch
the hi’s together to obtain a vector field h ∈ C∞(Ω̄) which satisfies

h · ν > δ a.e. on N,

h · ν < −δ a.e. on D.
(1.20)

We call such domains creased domains. The reason for this terminology is the fact
that the condition (1.20) requires that the domain be non-smooth along the interface
between D and N . In the work of one of the authors [1] it is shown that one may solve
the mixed problem with data in L2 for Laplace’s equation in these domains.

Finally, we define the tangential gradient (on ∂Ω) of a scalar-valued function u by

∇tu := ∇u− (ν · ∇u)ν, (1.21)

and agree that ∇t acts on vector fields component-wise.
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2 The Main Result

We are ready to state the main theorem of this paper.

Theorem 2.1 Let Ω be a bounded Lipschitz creased domain in Rn, n ≥ 3 and let L be
as in (1.1), where the parameters λ, µ and r are as in (1.5). Then there exists ε > 0
such that for |p− 2| < ε the mixed problem (1.7) has a unique solution u.

Moreover, for p as above, there exists C = C(Ω, D,N, µ, λ, r, p) > 0 such that for
any fD ∈ Lp,1(D) and fN ∈ Lp(N) the solution u of (1.7) satisfies

‖(∇u)∗‖Lp(∂Ω) ≤ C
(
‖fN‖Lp(N) + ‖fD‖Lp,1(D)

)
. (2.1)

A key step in the proof of Theorem 2.1 is establishing an estimate at the boundary
for solutions of (1.7) with p = 2 in bounded Lipschitz creased domains in Rn with
n ≥ 3. This will be achieved with the help of a sequence of lemmas. This portion of
our work builds on certain results of B. Dahlberg, C. Kenig and G. Verchota [5] which
we now recall.

Let us start by writing out a version of the Rellich identity for systems. To this
end consider a general second order, constant coefficient differential operator in Rn,

(Lu)α :=
∂

∂xi
aij

αβ

∂uβ

∂xj
, α = 1, . . . , n, (2.2)

whose coefficients aij
αβ satisfy the symmetry condition

aij
αβ = aji

βα. (2.3)

The Rellich identity in the next Lemma is due to L. Payne and F. Weinberger [17].
For related work see also [5].

Lemma 2.2 Let Ω be a bounded Lipschitz domain, and h = (hk)1≤k≤m be a smooth
vector field with components in C∞(Ω̄). Suppose that L is as in (2.2), with the coeffi-
cients aij

αβ satisfying (2.3), and let u be a solution of Lu = 0 in Ω with (∇u)∗ ∈ L2(∂Ω).
Then the following identity holds

∫
∂Ω

(
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
− 2νia

ij
αβ

∂uβ

∂xj
hk
∂uα

∂xk

)
dS

=
∫

Ω

(
∂hk

∂xk
aij

αβ

∂uα

∂xi

∂uβ

∂xj
− 2

∂hk

∂xi
aij

αβ

∂uα

∂xk

∂uβ

∂xj

)
dx. (2.4)
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Proof. When the domain Ω is smooth and u ∈ C∞(Ω̄) the proof given in [17] is a
computation using the divergence theorem. For the more general setting considered
here one can use the identity just discussed in a sequence of smooth approximating
domains Ωj ⊆ Ω such that Ωj increases to Ω along with the existence of the trace u|∂Ω

and the Lebesgue Dominated Convergence Theorem.

Next, we recall the Korn inequality as presented, for example, by P. Ciarlet in [3].
With the notation introduced in (1.4) we have

Theorem 2.3 Let Ω be a bounded Lipschitz domain with connected boundary and D ⊂
∂Ω a set of positive surface measure. Then there exists C = C(∂Ω, D) > 0 such that

∫
Ω

[
|u|2 + |∇u|2

]
dx ≤ C

(∫
Ω
|ε(u)|2 dx+

∫
D
|u|2 dS

)
, (2.5)

for all u ∈ L2,1(Ω).

We also state a version of Poincaré’s inequality on the boundary to the effect that
if Ω is as in the statement of Theorem 2.3 and D ⊂ ∂Ω has positive surface measure,
there exists C = C(∂Ω, D) > 0 such that

∫
∂Ω
|u|2 dS ≤ C

(∫
∂Ω
|∇tu|2 dS +

∫
D
|u|2 dS

)
, (2.6)

for each u ∈ L2,1(∂Ω).
The main estimate for the mixed problem (1.7) with L2 data is established next.

Theorem 2.4 Let Ω ⊂ Rn, n ≥ 3, be a bounded Lipschitz creased domain with con-
nected boundary and recall the partition of ∂Ω as ∂Ω = D ∪ N . Assume that L is a
second order differential operator as in (2.2) whose coefficients satisfy the symmetry
condition (2.3), and either: (i) the coefficients aij

αβ are defined by (1.3) and with pa-
rameters µ, λ and r as in (1.5), or: (ii) that the operator L is strongly elliptic (see
(1.15)). Then there exists C = C(L, ∂Ω, D,N) > 0 such that the estimate

∫
∂Ω
|∇u|2 dS ≤ C

(∫
N

∣∣∣∣∂u∂ρ
∣∣∣∣2 dS +

∫
D

[
|∇tu|2 + |u|2

]
dS

)
(2.7)

holds whenever u satisfies Lu = 0 in Ω and (∇u)∗ ∈ L2(∂Ω).

Remark. Similar results hold in the case of graph Lipschitz domains under the as-
sumption that D, N form a creased partition of ∂Ω. We leave the details to the
interested reader.
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In preparation for presenting the proof of Theorem 2.4 we record the following
interesting result of B. Dahlberg, C. Kenig and G. Verchota (Theorem 1.23 in [5]).
We will use a minor variation of their result and include a proof to show that our
formulation follows easily from theirs.

Lemma 2.5 Let Ω be a bounded Lipschitz domain in Rn and assume that L is an
elliptic second order differential operator as in (2.2) whose coefficients satisfy (2.3)
and (1.17). Then there exists C = C(L, ∂Ω) > 0 such that for any solution u of the
operator L in Ω such that (∇u)∗ ∈ L2(∂Ω), there holds

∫
∂Ω
|∇u|2 dS ≤ C

(∫
∂Ω
|ε(u)|2 dS +

∫
∂Ω
|u|2 dS

)
. (2.8)

Proof. According to Theorem 1.23 of [5], there exists C > 0 such that

∫
∂Ω
|∇u|2 dS ≤ C

(∫
∂Ω
|ε(u)|2 dS +

∫
Ω

[
|∇u|2 + |u|2

]
dx

)
, (2.9)

for all u such that Lu = 0 in Ω and (∇u)∗ ∈ L2(∂Ω). Using this and (2.5), we obtain

∫
∂Ω
|∇u|2 dS ≤ C

(∫
Ω
|ε(u)|2 dx+

∫
∂Ω
|ε(u)|2 dS +

∫
∂Ω
|u|2 dS

)
. (2.10)

Finally, the ellipticity condition (1.17) and integration by parts implies

∫
Ω
|ε(u)|2 dx ≤ C

∫
Ω
aij

αβ

∂uα

∂xi

∂uβ

∂xj
dx = C

∫
∂Ω
u · ∂u

∂ρ
dS

≤ C

∫
∂Ω

[
θ

∣∣∣∣∂u∂ρ
∣∣∣∣2 + θ−1|u|2

]
dS, θ > 0. (2.11)

Combining (2.10) and (2.11) and choosing θ > 0 small enough gives (2.8) as desired.

With this in hand, we now turn to the proof of the main estimate (2.7).

Proof of Theorem 2.4. We treat the assumption (i) in the statement of the theorem
(i.e., the case when the operator L is as in (1.1), with the coefficients from (1.3) having
the parameters µ, λ and r as in (1.5)). The proof is simpler when the operator L is
strongly elliptic (the assumption (ii) in the statement of the Theorem) and we omit
the details in this case.

The starting point is the identity (2.4) of Lemma 2.2 which readily gives
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∫
∂Ω
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
dS = 2

∫
∂Ω
νia

ij
αβ

∂uβ

∂xj
hk
∂uα

∂xk
dS (2.12)

+
∫

Ω

(
∂hk

∂xk
aij

αβ

∂uα

∂xi

∂uβ

∂xj
− 2aij

αβ

∂hk

∂xi

∂uα

∂xk

∂uβ

∂xj

)
dx.

Subtracting the quantity

2
∫

D
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
dx (2.13)

from both sides of (2.12) yields

∫
N
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
dS −

∫
D
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
dS

= 2
∫

N
νia

ij
αβ

∂uβ

∂xj
hk
∂uα

∂xk
dS + 2

∫
D
aij

αβ

∂uβ

∂xj
hk

(
νi
∂uα

∂xk
− νk

∂uα

∂xi

)
dS

+
∫

Ω

(
∂hk

∂xk
aij

αβ

∂uα

∂xi

∂uβ

∂xj
− 2aij

αβ

∂hk

∂xi

∂uα

∂xk

∂uβ

∂xj

)
dx. (2.14)

Going further, we may use (1.17) and the properties of the vector field h (see (1.20))
to obtain the following lower bound for the left-hand side of (2.14):

c

∫
∂Ω
|ε(u)|2 dS ≤

∫
N
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
dS −

∫
D
hkνka

ij
αβ

∂uα

∂xi

∂uβ

∂xj
dS. (2.15)

Consider next the terms on the right-hand side of (2.14). For the first term, we use
the Cauchy-Schwarz inequality to write

∫
N
νia

ij
αβ

∂uβ

∂xj
hk
∂uα

∂xk
dx ≤

∫
N

[
Cθ−1

∣∣∣∣∂u∂ρ
∣∣∣∣2 + θ|∇u|2

]
dS. (2.16)

For the second term in the right-hand side of (2.14), we observe that νi
∂uα

∂xk
− νk

∂uα

∂xi

is a tangential derivative of uα. Thus, we may use the Cauchy-Schwarz inequality to
obtain that

∫
D
aij

αβ

∂uβ

∂xj
hk

(
νi
∂uα

∂xk
− νk

∂uα

∂xi

)
dS ≤

∫
D

[
Cθ|∇u|2 + θ−1|∇tu|2

]
dS. (2.17)
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To estimate the integral over Ω in (2.14), we use that h is smooth, and (2.5) from
Theorem 2.3. Hence,

∫
Ω

(
∂hk

∂xk
aij

αβ

∂uα

∂xi

∂uβ

∂xj
− 2aij

αβ

∂uα

∂xk

∂hk

∂xi

∂uβ

∂xj

)
dx

≤ C

∫
Ω
|∇u|2 dx

≤ C

(∫
Ω
|ε(u)|2 dx+

∫
D
|u|2 dS

)
. (2.18)

Next, using (1.17), we write

∫
Ω
|ε(u)|2 dx ≤ C

∫
Ω
aij

αβ

∂uα

∂xi

∂uβ

∂xj
dx = C

∫
∂Ω
u · ∂u

∂ρ
dS (2.19)

≤ C

(∫
D

[
θ−1|u|2 + θ

∣∣∣∣∂u∂ρ
∣∣∣∣2] dS +

∫
N

[
θ|u|2 + θ−1

∣∣∣∣∂u∂ρ
∣∣∣∣2] dS

)
.

Combining (2.15) with (2.18) and (2.19), we conclude that for each θ > 0 the following
holds

c

∫
∂Ω
|ε(u)|2 dS ≤

∫
Ω

(∂hk

∂xk
aij

αβ

∂uα

∂xi

∂uβ

∂xj
− 2aij

αβ

∂uα

∂xi

∂hj

∂xj

∂uβ

∂xj

)
dx (2.20)

≤ C

(∫
D

[
(1 + θ−1)|u|2 + θ

∣∣∣∣∂u∂ρ
∣∣∣∣2 ]dS +

∫
N

[
θ|u|2 + θ−1

∣∣∣∣∂u∂ρ
∣∣∣∣2 ]dS

)
.

Unfortunately, the integral in the left-most side of (2.20) does not yet involve the full
gradient of u which prevents us from hiding the terms with θ small from the right-most
side of (2.20). This is where the boundary Korn inequality (2.8) is needed and this
allows us to estimate the full gradient of u at the cost of a term involving the L2-norm
of u. Therefore matters reduce to handling the term

∫
∂Ω |u|

2 dx. To this end, we write

∫
∂Ω
|u|2 dx ≤ C

∫
Ω

[
∇u|2 + |u|2

]
dx (2.21)

≤ C

(∫
Ω
|ε(u)|2 dx+

∫
D
|u|2 dS

)

≤ C

(∫
Ω
aij

αβ

∂uα

∂xi

∂uβ

∂xj
dx+

∫
D
|u|2 dS

)
10



= C

(∫
∂Ω
u · ∂u

∂ρ
dS +

∫
D
|u|2 dS

)

≤ C

(∫
N

[
θ−1

∣∣∣∣∂u∂ρ
∣∣∣∣2 + θ|u|2

]
dS +

∫
D

[
(1 + θ−1)|u|2 + θ

∣∣∣∣∂u∂ρ
∣∣∣∣2 ]dS

)

≤ C

(∫
N
θ−1

∣∣∣∣∂u∂ρ
∣∣∣∣2 dS +

∫
D

[
θ

∣∣∣∣∂u∂ρ
∣∣∣∣2 + (1 + θ + θ−1)|u|2

]
dS

)

+C
∫

∂Ω
θ|∇tu|2 dS.

In (2.21), the first inequality uses the boundedness of the trace operator as a map from
L2,1(Ω) to L2(∂Ω), the second inequality is a consequence of the Korn inequality (2.5) in
Ω, and the third one follows from (1.17). Going further, the equality in (2.21) follows
from integration by parts, the fourth inequality is a simple application of Cauchy-
Schwarz (and splitting the domain of integration over the boundary pieces N and D),
and the last inequality is a consequence of the Poincaré inequality (2.6). Finally (2.7)
follows by choosing θ > 0 small enough.

Consider next the Dirichlet-to-Neumann map Λ associated with the Lamé operator
L introduced in (1.1) given by

Λf :=
∂u

∂ρ
(2.22)

where ∂/∂ρ is the conormal introduced in (1.6) associated with the coefficients (1.3)
and u is the solution of the Dirichlet problem


Lu = 0 in Ω

u = f on ∂Ω

(∇u)∗ ∈ Lp(∂Ω).

(2.23)

If the data f is in Lp,1(∂Ω) for p near 2 and r ∈ (−µ, µ], we know from [5] that there
exists a solution to (2.23). Consequently, the map

Λ : Lp,1
0 (N) → Lp(N) (2.24)

exists and is continuous for p ∈ (2 − ε, 2 + ε) for some ε > 0. To be more precise, let
Lp,1

0 (N) denote the Sobolev space of p-integrable functions on the interior of N with
one derivative in Lp(N) and which vanish on the boundary of N . For f ∈ Lp,1

0 (N), let
f̃ ∈ Lp,1(∂Ω) be the extension by zero of f to ∂Ω and consider u the solution of the

11



Dirichlet problem (2.23) with data f̃ . In this notation we set Λf :=
∂u

∂ρ

∣∣∣
N

. We may

make a similar definition of Λ for a general strongly elliptic system, see W. Gao [7].
The solvability of the mixed problem can then be formulated using the Dirichlet-

to-Neumann map (2.24). If we can solve the Dirichlet problem when the data f is in
Lp,1(∂Ω), then the existence of a solution for the mixed problem is equivalent to the
surjectivity of the map (2.24).

Remark. Strictly speaking, B. Dahlberg, C. Kenig and G. Verchota [5] treat (2.23)
only for the case p = 2, in which scenario the authors establish the invertibility of cer-
tain singular integral operators of layer potential type in L2(∂Ω). Known perturbation
arguments (see, e.g., [18], [20]) permit one to extend such invertibility results to the
Lp(∂Ω) scale with p near 2. In turn, this ultimately leads to an extension of the main
well-posedness results in [5] to the Lp setting with p near 2.

Lemma 2.6 Let Ω be a bounded Lipschitz domain in Rn and recall the partition of
∂Ω = D∪N . Suppose that L is an operator as in (2.2) and the coefficients aij

αβ satisfy
either of the conditions in Theorem 2.4. Suppose u is a solution of the mixed problem
(1.7) with Lp data with p ≥ 2 − 1

n if n ≥ 3 or p > 1 if n = 2. If the surface measure
of D is not zero and fN = 0 and fD = 0, then u = 0.

Proof. Adapting the argument in [2] (see [21] for a correction) one can show that

(∇u)∗ ∈ Lp(∂Ω) ⇒ u∗ ∈ Lq(∂Ω) if

{
1/q = 1/p− 1/(n− 1) if n ≥ 3,

1/q = 1/p′ = 1− 1/p if n = 2.
(2.25)

Using a family of Lipschitz domains which increase to Ω, we may apply the divergence
theorem and obtain

∫
Ω
aij

αβ

∂uα

∂xi

∂uβ

∂xj
dx =

∫
∂Ω
u
∂u

∂ρ
dS = 0. (2.26)

A key observation in establishing (2.26) is that our hypotheses guarantee that u∗ ∈
Lp′(∂Ω) with 1/p+ 1/p′ = 1. When the strong ellipticity condition (1.15) is satisfied,
then (2.26) and the Poincaré inequality imply that u = 0. This uses that the surface
measure of D is positive. Finally, if instead of (1.15) the weaker ellipticity condition
in (1.17) holds, then one must use the Korn inequality (2.5) also in order to conclude
that u = 0.

12



Theorem 2.7 Let Ω be a bounded, creased, Lipschitz domain in Rn, n ≥ 3, and
assume that λ, µ and r are as in (1.5). If Λ is the Dirichlet-to-Neumann map from
(2.24) associated with the Lamé system (1.1) and the conormal derivative from (1.6),
then there exists ε = ε(Ω, D,N, λ, µ, r) > 0 such that Λ : Lp,1

0 (N) → Lp(N) is an
isomorphism for |p− 2| < ε.

Proof. Fix λ, µ and r as in (1.5) and note that Lemma 2.6 gives that the map Λ
is injective for p in an open interval containing 2. To show that the map is onto,
we use the uniform estimate of Theorem 2.4 and the method of continuity. We will
consider two one-parameter families of operators which connect the operator Λ with
the Dirichlet-Neumann map for the Laplacian acting on vector-valued functions, Λ0.
As an intermediate step, we will need to consider the operator Λ1 which is associated
with the operator (1.1) and the choice of coefficients given by (1.3) when r = 0.

We begin by defining the family of operators Lt with coefficients

aij
αβ = µδijδαβ + tδiαδjβ , 0 ≤ t ≤ λ+ µ. (2.27)

Let Λ(t) denote the Dirichlet-to-Neumann map for Lt. At t = 0, the operator Λ(0) = Λ0

is the Dirichlet to Neumann map for the Laplacian, extended in the obvious way to
vector-valued functions. According to [1], the map Λ0 is invertible. For 0 ≤ t ≤ λ+ µ,
Theorem 2.4 implies the estimate

‖f‖
L2,1

0 (N)
≤ C‖Λ(t)f‖L2(N), uniformly for f ∈ L2,1

0 (N). (2.28)

In addition, from the work of R. Coifman, A. McIntosh and Y. Meyer in [4] (see also E.
Fabes, M. Jodeit and N. Rivière [6] and S. Hofmann [10]) it follows that the assignment
t 7→ Λ(t) is Lipschitz, i.e.

‖Λ(t)f − Λ(s)f‖L2(N) ≤ C|t− s|‖f‖
L2,1

0 (N)
, (2.29)

for every t, s ∈ [0, λ + µ], uniformly in f ∈ L2,1
0 (N). Thus, the method of continuity

[8, Theorem 5.2] implies Λ1 = Λ(λ+ µ) is invertible as an operator from L2,1
0 (N) onto

L2(N).
To deform Λ1 into Λ, we consider the family of operators with coefficients

aij
αβ = µδijδαβ + (λ+ µ− t)δiαδjβ + tδiβδjα,

{
0 ≤ t ≤ r if r ∈ [0, µ],

r ≤ t ≤ 0 if r ∈ (−µ, 0).
(2.30)

If we now let Λ(t) denote the Dirichlet to Neumann map associated with this family
of coefficients, we have that the family of operators Λ(t) associated with (2.30) is
continuous and satisfies the estimate (2.28) and the continuity estimate (2.29). As the
operator Λ(t) is invertible for t = 0 by the above, the method of continuity implies
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the operator is also invertible at t = r and hence the map Λ = Λ(r) is invertible when
p = 2.

Since due to the remark above there exists ε > 0 so that the map Λ in (2.24) is
continuous whenever |p−2| < ε, we invoke again the perturbation arguments of [18] to
conclude that the map Λ will be invertible whenever p is in some open interval which
contains 2.

We can finally give the proof of our main theorem.

Proof of Theorem 2.1. As noted earlier, we can solve the Dirichlet problem with data
in Lp,1(∂Ω) for p in a neighborhood of 2. Given this result, the existence of solutions
follows from Lemma 2.7 which gives the invertibility of the Dirichlet-to-Neumann map
acting on Lp,1

0 (N). The uniqueness of solutions is given in Lemma 2.6.

Remark. The well-posedness of (1.7) implies, a posteriori, that the solution can be
represented in the form of elastic layer potentials. More specifically, let S be the single
layer potential operator (mapping fields on ∂Ω into fields in Ω), and denote by S its
trace to the boundary. Then (see, e.g., [5]) ∂/(∂ρ) ◦ S = −1

2I + K∗ where I is the
identity and K∗ is the so-called (adjoint) boundary double layer. Then the fact that
(1.7) is uniquely solvable becomes equivalent to the invertibility of the assignment

T : Lp(∂Ω) → Lp,1(D)⊕ Lp(N), T g :=
([
Sg
]∣∣∣

D
,
[
(−1

2I +K∗)g
]∣∣∣

∂Ω

)
, (2.31)

whenever |p − 2| < ε. Consequently, the solution of (1.7) can be represented in the
form

u = S
(
T−1(fD, fN )

)
in Ω. (2.32)
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