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Abstract. In their classical work, Ladyzhenskaya and Ural

0

tseva gave a de�nition

of weak solution for parabolic equations in cylindrical domains. Their de�nition was

broad enough to guarantee the solvability of all such problems but narrow enough to

guarantee the uniqueness of these solutions. We give here some alternative de�nitions

which are appropriate to non- cylindrical domains, andwe prove the unique solvability

of such problems.

1. Introduction

In [1], Ladyzhenskaya and Ural

0

tseva de�ned a weak solution for parabolic equa-

tions in divergence form with bounded measurable coe�cients:

�u

t

+D

i

(a

ij

D

j

u+ b

i

u) + c

i

D

i

u+ c

0

u = D

i

f

i

+ g in 
 (1.1a)

where 
 = ! � (0; T ) for some domain ! � R

n

. It is also possible to adjoin initial

and (zero) boundary values to this equation. To do so, we set B
 = ! � f0g,

S
 = @
� (0; T ), !(� ) = ! � f�g, and 
(� ) = ! � (0; � ). We then say that u is a

weak solution of (1.1a) and

u = 0 on S
; u = ' on B
 (1.1b)

for square integrable f , g, and ' if u is a function in

V
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satisfying the integral identity

0 =

Z


(�)

u 

t

dX �

Z


(�)

(a

ij

D

j

u+ b

i

u� f

i

)D

i

 dX

+

Z


(�)

(c

i

D

i

u+ c

0

u� g) dX +

Z

B


' dx �

Z

!(�)

u dx

(1.2)

for all � 2 (0; T ) and all  2 C

1

(
) which vanish on S
. (Here and below X =

(x; t) denotes a point in R

n+1

.) As long as the coe�cients a

ij

, b

i

, c

i

, and c

0

are

bounded measurable functions and the matrix (a

ij

) is uniformly positive de�nite

in 
, Ladyzhenskaya and Ural

0

tseva show that (1.1) has a unique solution.

A key element in their proof is the energy inequality

sup

�

Z

!(�)

u

2

dx +

Z




jDuj

2

dX � C(

Z




jf j

2

+ g

2

dX +

Z

B


'

2

dx); (1.3)

where the constant C is determined only by the above indicated L

1

norms, the

dimension n and an upper bound for T . (In fact, the conditions on the coe�cients

b

i

, c

i

, and c

0

can be relaxed to their membership in suitable L

p;q

spaces, and the

function g need only lie in some other L

p;q

space. We shall return to this point in

detail in Section 5.)

The techniques involved in proving these results are very closely connected to

the special form of the domain 
 as a cylinder. If u is smooth enough, then (1.3)

is a simple consequence of (1.2) since one can replace the test function  by u and

then integrate the quantity uu

t

explicitly. For u 2 V

0

, the test function involves

the Steklov average of u:

u

h

(x; t) =

1

h

Z

h

0

u(x; t+ � ) d�;

and this expression leads to a suitable test function only if 
 is cylindrical. In

addition, the form of the equation (1.1a) precludes any simple functional-analytical

approach to existence and uniqueness since not every element of V

0

is a solution

of an equation of the form (1.1a). Generally, functions in V

0

have time derivatives

which cannot be written as the sum of an L

2

function and the spatial derivative of

an L

2

function, and the set of V

0

functions which have time derivatives of this special

form is dense, and hence not closed, in V

0

. Hence, the extension of Ladyzhenskaya

and Ural

0

tseva's results is more subtle than one might expect.

Although there is a large literature on classical solutions of parabolic equations

in non-cylindrical domains (see the references in [4], for example), we know of

only a few other papers dealing with weak solutions of parabolic equations in non-

cylindrical domains. Lions [5] proved existence and uniqueness of weak solutions

for a large class of higher order equations and systems, but his class of domains is

much smaller than ours, as he only considers domains which can be written locally

as the graph of a C

1

function. Yong [6] considers a broader class of domains than

we do, but he assumes that the functions f

i

and g are in a smaller space so that the

weak solutions are known to be continuous. This additional regularity is not needed
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for our proof. Finally, Cannarsa, Da Prato,and Zol�esio [2], recast the problem in

a semigroup setting. Their hypotheses on 
 are more restrictive than ours and

an energy inequality is not proved because the authors look in a larger class of

functions for a weak solution. (On the other hand, their method also applies to

hyperbolic equations.)

In this paper we show that problem (1.1) has a unique weak solution in the

space V

0

(de�ned below and which is the same as V

0

de�ned above when 
 is

cylindrical) when P
 2 H

1

; this condition is the parabolic analog of 
 being a

bounded Lipschitz domain for elliptic equations. Section 2 presents de�nitions and

gives a precise statement of our result. The energy inequality is proved in Section

3, and Section 4 uses this energy inequality to show that (1.1) has a unique weak

solution. Finally Section 5 contains a discussion of some extensions of our main

result.

2. Statement of results

As previously mentioned, we write X = (x; t) = (x

1

; : : : ; x

n

; t) for a point in

R

n+1

with n a positive integer. We also write X

0

= (x

0

; t

0

) and Y = (y; s) for

other points in R

n+1

, and we de�ne a metric on R

n+1

by

jX � Y j = (jx � yj

2

+ jt� sj)

1=2

:

(Although we use the same symbol to denote the absolute value of an element in

R, the Euclidean length of a vector in R

n

and this metric in R

n+1

, it will be clear

from the context which of these meanings is relevant.) It will also be useful to write

X

0

for the pont (x

1

; : : : ; x

n�1

; t) in R

n

. We use Q(X

0

; r) to denote the cylinder

fjx� x

0

j < r; t

0

� r

2

< t < t

0

g.

For 
, a connected open subset of R

n+1

, we de�ne !(� ) = f(x; � ) 2 
g, 
(� ) =

fX 2 
 : t < �g, and I(
) = f� 2 R : 
(� ) 6= ;g. We also de�ne the parabolic

boundary of 
, P
, to be the set of all points X

0

2 @
 such that the cylinder

Q(X

0

; r) contains points not in 
 for any r > 0. We write B
 for the set of all

points X

0

2 P
 such that Q((x

0

; t + r

2

); r) � 
 for some r > 0, and S
 for

P
 nB
. The function d is de�ned in 
 by

d(X) = min

Y 2S


s�t

jX � Y j:

For any open subset � of R

n+1

, we write H

1

(�) for the set of all functions f

de�ned on � such that there is a nonnegative constant F for which jf(X)�f(Y )j �

F for all X and Y in �. The in�mum of all such constants is the H

1

norm of f .

(In particular, f will be uniformly continuous on � and uniformly Lipschitz with

respect to x.)

We say that P
 2 H

1

if there is a positive constant � such that for any point

X

0

2 S
, there is a function f 2 H

1

(fjX

0

�X

0

0

j < �g) for which (after a suitable

rotation of x-axes)


 \ fjX �X

0

j < �g = fjX �X

0

j < �; x

n

> f(x

0

; t); t 2 I(
)g

and if B
 lies in a single hyperplane ft = t

0

g.
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When P
 2 H

1

, we de�ne C

1

S

(
) to be the set of all functions u de�ned on 


such that u, Du, and u

t

are uniformly continuous on 
 with u = 0 on S
. We then

de�ne the norm

kuk

V

= sup

�2I(
)

Z

!(�)

u

2

dx +

Z


(�)

jDuj

2

dX;

and use V

0

to denote the closure of C

1

S

(
) with respect to this norm. It is simple

to verify that this de�nition leads to the space denoted by V

0

in the introduction

when 
 is a cylinder.

Finally, we say that u is a weak solution of (1.1) if u 2 V

0

and if the integral

identity (1.2) holds for all  2 C

1

S

(
). With these de�nitions, our result can be

written in the following form:

Theorem 1. Let P
 2 H

1

and suppose that a

ij

, b

i

, c

i

, and c

0

are L

1

(
) functions

such that

ka

ij

k

1

� �; (2.1a)

kb

i

� c

i

k

1

� �

1

; (2.1b)

c

0

� �

1

a.e. in 
; (2.1c)

for some nonnegative constants � and �

1

. Suppose also that there is a positive

constant � such that

a

ij

�

i

�

j

� �j�j

2

(2.2)

for all � 2 R

n

and almost all x 2 
. Then for any f and g in L

2

(
) and any

' 2 L

2

(B
), there is a unique weak solution u of (1.1). Moreover, there is a

constant C determined only by n, �, �, �

1

, and the length of I(
) such that (1.3)

holds.

3. The energy inequality

To prove our energy inequality, we introduce a regularized distance. According

to [3, Section 3], if P
 2 H

1

, then there is a function � 2 H

1

(
) \ C

1

(
) with

d=2 � � � 2d, jD

2

�j + j�

t

j � C=d, jD�

t

j � Cd

�2

. Moreover, in any set 


�

=


 \ fjX �X

0

j < �g from the de�nition of P
 2 H

1

, we have that 1=2 � D

n

� � 2.

Hence we can introduce new coordinates Y in 


�

by

y

0

= x

0

; y

n

= �(X); s = t;

and we note that det(@X=@Y ) = 1=D

n

�. In the rest of this section, we use D

i

for derivatives in the original coordinates, x; t, and @

i

for derivatives in the new

coordinates, y; s. Also, we infer from direct calculation that  

t

=  

s

+

@ 

@y

n

�

t

for

any su�ciently smooth function  .

We write Q

+

for the image of 


�

in Y -coordinates, so that Hardy's inequality

implies that

Z

Q

+

�

u

y

n

�

2

dY � C

Z

Q

+

j@uj

2

dY � Ckuk

2

V

:
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If  2 C

1

S

is zero outside 


�

and if I(


�

) = (�

1

; �

2

), it follows that (1.2) can be

written in Y -coordinates as

Z

Q

+

u 

s

1

D

n

�

dY +

Z

Q

+

u@

n

 

�

t

D

n

�

dY �

Z

Q

+

(A

ij

@

j

u+B

i

u� F

i

)@

i

 

1

D

n

�

dY

+

Z

Q

+

(C

i

@

i

u+ c

0

u� g) 

1

D

n

�

dY

=

Z

B

+

(�

1

)

u 

1

D

n

�

dy �

Z

B

+

(�

2

)

u 

1

D

n

�

dy

where @

i

= @=@y

i

,

A

ij

= a

km

D

k

y

i

D

m

y

j

; B

i

= b

k

D

k

y

i

; C

i

= c

k

D

k

y

i

;

and B

+

(� ) = f(y; � ) 2 Q

+

g.

Next, we de�ne

w

h

(Y ) =

1

h

Z

s+h

s

w(y; � ) d�;

for h 2 R and any function w. As in [1, Section III.1] but also taking Hardy's

inequality into account, we may use the test function  = �

�h

for h su�ciently

small, and � a C

1

S

(


�

) function which vanishes on @


�

\ 
 and for t = �

1

. It then

follows that

�

Z

Q

+

�

�

u

D

n

�

�

h;s

dY +

Z

Q

+

@

n

�

�

u�

t

D

n

�

�

h

dY

�

Z

Q

+

�

(A

ij

@

j

u+B

i

u� F

i

)=D

n

�

�

h

@

i

� dY

+

Z

Q

+

�

(C

i

@

i

u+ c

0

u� g)=D

n

�

�

h

� dY = 0:

The approximation argument on [1, p. 142] (and Hardy's inequality) then shows

that this identity holds for any � 2 V

0

(Q

+

\ ft < �

2

� hg). In particular, we can

choose � = u

h

� for � 2 C

1

(


�

) a nonnegative function which vanishes on @


�

\
.

Sending h! 0, we �nd that

1

2

Z

B

+

(�

2

)

u

2

�

1

D

n

�

dy �

1

2

Z

B

+

(�

1

)

u

2

�

1

D

n

�

dy

�

Z

Q

+

(A

ij

@

i

u+B

i

u� F

i

)@

i

(u�)

1

D

n

�

dY

+

Z

Q

+

[(C

i

@

i

u+ c

0

u� g)u�]

1

D

n

�

dY = I;

where

I = �

1

2

Z

Q

+

�@

n

(u

2

)

�

t

D

n

�

dY �

Z

Q

+

u

2

@

n

�

�

t

D

n

�

dY

�

1

2

Z

Q

+

u

2

�

s

1

D

n

�

dY +

1

2

Z

Q

+

u

2

�

�

1

D

n

�

�

s

dY:
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We now rewrite I. First we integrate by parts to see that

Z

Q

+

�@

n

(u

2

)

�

t

D

n

�

dY = �

Z

Q

+

u

2

�

@

n

�

�

t

D

n

�

+ �@

n

�

�

t

D

n

�

��

dY;

and hence

I =

1

2

Z

Q

+

u

2

[�@

n

��

t

� �

s

]

1

D

n

�

dY

+

1

2

Z

Q

+

u

2

�

�

@

n

�

�

t

D

n

�

�

+

�

1

D

n

�

�

s

�

dY

We denote these two integrals by I

1

and I

2

. In I

1

, we note that �

t

= @

n

��

t

+ �

s

, so

I

1

= �

Z

Q

+

u

2

�

t

1

D

n

�

dY:

For I

2

, we note that

@

n

�

�

t

D

n

�

�

=

1

D

n

�

@

n

(�

t

) + �

t

@

n

�

1

D

n

�

�

=

1

(D

n

�)

2

D

nt

�+ �

t

@

n

�

1

D

n

�

�

;

and that

�

1

D

n

�

�

s

=

�

1

D

n

�

�

t

� �

t

@

n

�

1

D

n

�

�

;

so I

2

= 0. Therefore

I = �

1

2

Z

Q

+

u

2

(�

2

)

t

1

D

n

�

dY;

from which it follows that

1

2

Z

!(�

2

)

u

2

� dx�

1

2

Z

!(�

1

)

u

2

� dx�

Z


(�)

(a

ij

D

j

u+ b

i

u� f

i

)D

i

(u�) dX

+

Z


(�)

[(c

i

D

i

u+ c

0

u� g)u�] dX = �

1

2

Z


(�)

u

2

�

t

dX:

Now we cover S
 by a �nite number of cylinders Q(1); : : : ; Q(N) of the form 


�

.

Then there is a constant " > 0 such that d > " in 
 n [Q(k), so if we write Q(0)

for fd > "=2g, then Q(0); : : : ; Q(N) is a �nite open cover of 
 [ P
. Using a

subordinate partition of unity (�

k

)

0�k�N

, we infer this inequality for each �

k

. (Of

course, the proof for k = 0 is simpler because we do not need to change variables.)

Summing on k, we �nd that

1

2

Z

!(t

1

)

u

2

dx �

1

2

Z

B


'

2

dx�

Z




(a

ij

D

j

u+ b

i

u� f

i

)D

i

u dX

+

Z




[(c

i

D

i

u+ c

0

u� g)u] dX = 0;
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where I(
) = (t

0

; t

1

), and repeating the argument with 
(� ) in place of 
 shows

that

1

2

Z

!(�)

u

2

dx �

1

2

Z

B


'

2

dx�

Z


(�)

(a

ij

D

j

u+ b

i

u� f

i

)D

i

u dX

+

Z


(�)

[(c

i

D

i

u+ c

0

u� g)u] dX = 0

for any � 2 I(
). It now follows from hypotheses (2.1a{c) that

Z

!(�)

u

2

dx+

Z


(�)

jDuj

2

� C(

Z


(�)

u

2

dX + kfk

2

+ kgk

2

+ k'k

2

); (3.1)

and hence

Z

!(�)

u

2

dx � C

Z


(�)

u

2

dX + CK;

where

K = kfk

2

+ kgk

2

+ k'k

2

:

It then follows from Gronwall's inequality that

Z


(�)

u

2

dX � CK;

and then (3.1) gives (1.3).

4. Proof of Theorem 1

It follows from the energy inequality in Section 3 that any weak solution of (1.1)

must be unique, so we only have to show that a weak solution exists. To this end,

we recall that, for � 2 (0; 1), we say that f 2 H

1+�

(�) if f 2 H

1

(�) with the

additional assumptions that

jDf(X) �Df(Y )j � CjX � Y j

�

for all X and Y in � and

jf(X) � f(Y )j � CjX � Y j

1+�

for X and Y in � with x = y. With the obvious de�nition of P
 2 H

1+�

, we know

from [4, Theorem 11.3] that there is a unique (classical) solution of the equation

�u

t

+ a

ij

D

ij

u+B

i

D

i

u+ cu = F in 
; (4.1a)

with boundary condition

u = � on P
 (4.1b)

if the coe�cients a

ij

, B

i

, c, and F are su�ciently smooth (for example, H

1

) and

if � 2 H

1+�

and P
 2 H

1+�

. In addition, u 2 H

1+�

(
), and hence u is also a

7



weak solution of (1.1) with suitable B

i

, c and F provided the coe�cient functions

in (1.1) and P
 are su�ciently smooth.

Now we take sequences of smooth functions (a

ij

m

), (b

i

m

), (c

i

m

), and (c

0

m

) converg-

ing a.e. to a

ij

, b

i

, c

i

, and c

0

respectively and satisfying (2.1a{ c) uniformly. We also

take sequences of smooth functions (f

i

m

), (g

m

), and ('

m

) converging in L

2

to f

i

,

g, and ', respectively so that '

m

is compactly supported in B
. We then choose

"(m) > 0 so that '(X) = 0 if �(X) < "(m) and set 


m

= fX 2 
 : �(X) > "(m)g.

It follows from the remarks in the preceding paragraph that, for each m, there is a

classical solution u

m

of

�u

m;t

+D

i

(a

ij

m

D

j

u

m

+ b

i

m

u

m

) + c

i

m

D

i

u

m

+ c

0

m

= D

i

f

i

m

+ g

m

in 


m

(4.2a)

u

m

= 0 on S


m

; u

m

= '

m

on B


m

: (4.2b)

The energy inequality implies that ku

m

k

V

is bounded by a constant independent

of m. Hence, we can extract a subsequence which converges weakly in the k � k

V

norm to a limit function u. The weak convergence implies that u is a weak solution

of (1.1), and the uniform estimate implies that (1.3) holds.

5. Some extensions of the result

Since the boundedness of b

i

, c

i

and c

0

is used only to verify certain estimates, we

can relax the regularity of these coe�cients as in [1]. Speci�cally, our arguments

apply if

(b

i

)

2

; (c

i

)

2

; c

0

are in L

q;r

and g 2 L

q

1

;r

1

for 2=r + n=q = 2, r � 1, 2=r

1

+ n=q

1

= (n + 4)=2, in which case we must replace

kgk

2

by kgk

q

1

;r

1

. In addition, the constants q and r can be di�erent for di�erent

coe�cients. Finally, the constant C only depends on the coe�cients b

i

, c

i

, and c

0

through the norms kb

i

� c

i

k

q;r

and k(c

0

)

+

k

q;r

, where (c

0

)

+

is the positive part of

c

0

.

We also note that the constant C can be taken independent of the length of I(
)

under appropriate conditions. For example, if c

0

� 0 and b

i

= c

i

, and if g 2 L

2;1

,

then infer that

1

2

Z

!(�)

u

2

dx�

1

2

Z

B


'

2

dx�

Z


(�)

(a

ij

D

j

u� f

i

)D

i

u dX

=

Z


(�)

gu dX �

Z




gu dX:

Since

Z




gu dX � kgk

2;1

(sup

�

Z

!(�)

u

2

dx)

1=2

;

we now infer that

sup

�

Z

!(�)

u

2

dx+

Z




jDuj

2

dX � C(n; �)[kfk

2

2

+ kgk

2

2;1

]

in place of (3.1), and this inequality is the appropriate analog of (1.3).
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