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Abstract. If L



= divr is an elliptic operator with scalar coe�cient , we show that we can

recover the coe�cient  from the Dirichlet to Neumann map under the assumption that  has only

3=2 + � derivatives. Previously, the best result required  to have two derivatives.
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Let 
 � R

n

; n � 3, be a bounded open set and let L



= div r be an elliptic

operator on 
 with scalar coe�cient . We let �



denote the Dirichlet to Neumann

map �



f = @u=@� where u is the solution to the Dirichlet problem L



u = 0 in


; u = f on @
. In 1987, Sylvester and Uhlmann [10] showed that if we restrict

attention to  which are su�ciently smooth, then the map  ! �



is injective.

Nachman, Sylvester and Uhlmann [8], showed that injectivity continues to hold if 

has two bounded derivatives. Extensions to slightly less smooth conductivities or the

related Schr�odinger equation are given in Chanillo [3] and Ramm [9]. Isakov [5] has

established injectivity for conductivities with jump discontinuities.

Since the only smoothness assumption needed to de�ne �



is that  be mea-

surable, it is reasonable to ask if the map  ! �



is injective under less restrictive

hypotheses on . In this paper, we show that  need have only

3

2

+� derivatives. There

is no reason to believe that the result in this paper is optimal. I conjecture that the

right smoothness assumption is that  have one derivative. However, the methods pre-

sented here do not give this. To state our main result, we recall the standard space of

H�older continuous functions C

�

(

�


) = ff : f : 
! R and jf(x)� f(y)j �M jx� yj

�

for some M > 0g.

Theorem 0.1. Let 
 � R

n

, n � 3 be a bounded, Lipschitz domain. Then the

map  ! �



is injective on the set f :  > 0 in

�


; r 2 [

�>0

C

1=2+�

(

�


)g.

The outline of our argument is the same as in [10]. We construct special solutions

of L



u = 0 by studying a Schr�odinger operator �� q. The innovation here is that we

consider potentials q which lie in a Besov space of negative order.

We begin by recalling the Besov spaces and some of their simple properties. We

will use the monograph of Bergh and L�ofstrom [2] as our reference for these spaces.

For s 2 R and 1 � p; q � 1, we let B

s

p;q

denote the Besov space of distributions.

Roughly speaking, a distribution in B

s

p;q

has s derivatives in L

p

. We recall that if

0 < s < 1; 1 � p; q <1, then f 2 B

s

p;q

if and only if

kfk

L

p

+

 

Z

R

n

�

Z

R

n

jf(x + h) � f(x)j

p

dx

�

q=p

jhj

�n�sq

dh

!

1=q

(1)

�
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is �nite. Furthermore, the expression in (1) gives a norm on B

s

p;q

. When p = q =1,

the limiting version of (1) is

kfk

L

1

+ sup

x2R

n

; jhj6=0

jhj

�s

jf(x + h)� f(x)j:

This provides a norm for B

s

1;1

and thus, for 0 < s < 1; B

s

1;1

= C

s

(R

n

).

We also consider a scale of weighted Besov spaces B

s;�

p;q

de�ned for � 2 R by

B

s;�

p;q

= ff : (1 + jxj

2

)

�=2

f 2 B

s

p;q

g

with the norm

kfk

B

s;�

p;q

= k(1 + jxj

2

)

�=2

fk

B

s

p;q

:

We will use B

s;c

p;q

to denote the distributions in B

s

p;q

which are compactly supported

and

B

s;loc

p;q

= ff :  f 2 B

s

p;q

for each  2 C

1

0

(R

n

)g:

We recall that B

0

2;2

is the usual Lebesgue space L

2

on R

n

. If follows that

B

0;�

2;2

= ff : (1 + jxj

2

)

�=2

f 2 L

2

g

is the weighted Lebesgue space L

2

�

used by Sylvester and Uhlmann. We also have that

B

1

2;2

is the Sobolev space of functions having one derivative in L

2

and that

B

1;�

2;2

= ff : f; rf 2 L

2

�

g:(2)

Next, we note that since B

s

2;2

and B

s;�

2;2

are isomorphic, we may identify the complex

interpolation spaces

[B

s

0

;�

2;2

B

s

1

;�

2;2

]

�

= B

s

�

;�

2;2

; 0 < � < 1

where s

0

; s

1

2 R; s

�

= (1� �)s

0

+ �s

1

(see [2, Theorem 6.4.5]).

The reason for introducing the Besov spaces to be able to de�ne products of

(certain) distributions as bilinear maps between Besov spaces. This depends on the

following elementary result regarding multiplication in Besov spaces.

Proposition 0.2. a) If k�k

1

+ kr�k

1

� M , then for 0 < s < 1,

� 2 R; 1 � p; q �1

k uk

B

s;�

p;q

� Ckuk

B

s;�

p;q

M

where C = C(n; p; q).

b) For 0 < s < 1,

kuvk

B

s

1;2

� Ckuk

B

s

2;2

kvk

B

s

2;2

where C = C(s; n).

We do not prove this Proposition, but note that each result follows easily from

the norm for B

s

p;q

given in (1). I thank Mike Frazier for telling me of part b) of the

above Proposition.
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Next, we give estimates for the operator G

�

which is the solution operator to the

equation

�u+ 2� � ru = f

where � 2 C

n

.

We observe that G

�

de�ned by

G

�

f =

 

^

f

�j�j

2

+ 2i� � �

!

_

(3)

maps from S to S

0

. Here we are using the Fourier transform de�ned by

^

f (�) =

R

R

n

e

�ix��

dx. In [10], it is shown that if � �� = 0, then G

�

: L

2

�+1

! L

2

�

; �1 < � < 0,

with the bound

kG

�

fk

L

2

�

�

C

j�j

kfk

L

2

�+1

; j�j > 1 and � 1 < � < 0:(4)

We give a simple extension of this result to obtain mapping properties of G

�

on B

s;�

2;2

.

Shortly before this paper was written, A. Nachman established related estimates for

the operator G

�

in two dimensions [7, Lemma 1.3].

Theorem 0.3. Let � 2 C

n

satisfy � � � = 0 and j�j > 1. Then for �1 < � < 0

and 0 � s � 1=2, the map G

�

de�ned by (3) satis�es

kG

�

fk

B

s;�

2;2

�

C

j�j

1�2s

kfk

B

�s;�+1

2;2

:

where C = C(n; s; �).

Proof. We choose a function � satisfying � = 1 on f� : j�j � 4j�jg; supp � �

f� : j�j < 8j�jg and jr�j � C=j�j. For u 2 L

2

�

, we de�ne

Tu = r[(�û)

_

]:

We claim that

kTuk

L

2

�

� Cj�j kuk

L

2

�

; �1 � � � 1(5)

When � = 0, this is elementary since T is a multiplier operator whose symbol is

bounded by Cj�j. To obtain (5) when � = 1, note that

kûk

L

2 + krûk

L

2

gives an equivalent norm on the weighted Lebesgue space L

2

1

. Now

r

c

Tu = i��rû+ ûr(i��)

and hence

kr

c

Tuk

L

2
� C(j�j+ 1) kuk

L

2

1

:

If we recall that j�j � 1, then (5) follows for � = 1. The estimate (5) follows by duality

when � = �1 and for the remaining values of �, by interpolation.
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Next, de�ne on operator S by

(Sf)

^

(�) =

i�(1 � �)

^

f

(�j�j

2

+ 2i� � �)

=

1

j�j

 

^

f

where  (�) = i�j�j(1� �)=(�j�j

2

+ 2i� � �). The argument used to treat T shows that

f ! ( 

^

f )

_

is bounded on L

2

�

; �1 � � � 1, and the norm of this operator is bounded for j�j � 1.

The fractional integral f ! (j�j

�1

^

f )

_

maps L

2

�+1

to L

2

�

; �1 < � < 0, by the

argument in Lemma 3.1, [10]. This gives

kSfk

L

2

�

� C(n; �)kfk

L

2

�+1

; �1 < � < 0:

Summarizing, we have rG

�

f = T (G

�

f) + Sf and hence

krG

�

fk

L

2

�

� Cj�j kG

�

fk

L

2

�

+ Ckfk

L

2

�+1

� Ckfk

L

2

�+1

where the second inequality is (4).

Combining this with (5) and the characterization of B

1;�

2;2

in (2) gives

kG

�

fk

B

1;�

2;2

� Ckfk

B

0;�+1

2;2

; �1 < � < 0:

By duality, we have

kG

�

fk

B

0;�

2;2

� Ckfk

B

�1;�+1

2;2

; �1 < � < 0:

Interpolating between these estimates and (4) gives

kG

�

fk

B

s;�

2;2

�

C

j�j

1�s

kfk

B

0;�+1

2;2

(6)

and

kG

�

fk

B

0;�

2;2

�

C

j�j

1�s

kfk

B

�s;�+1

2;2

(7)

where each inequality holds for 0 � s � 1 and �1 < � < 0. Finally interpolating

between (6) and (7) gives the estimate of the Theorem.

If g is a function on R

n

satisfying

�

�1

< g < �(8)

for some � > 0 and rg is bounded and compactly supported, then for u 2 C

1

(R

n

),

we may de�ne a distribution m

q

(u) by

m

q

(u)(v) = �

Z

R

n

rg � r

�

1

g

uv

�

dx:(9)
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Formally, q = g

�1

�g will be the potential in our Schr�odinger operator and m

q

(u) is

the product qu. Our main result on m

q

is:

Theorem 0.4. Suppose that g is de�ned on R

n

, satis�es (8) and for some

s; 0 < s < 1, and M > 0, satis�es

krgk

B

1�s

1;2

� M(10)

supprg � fx : jxj < Mg:(11)

Then there exists C = C(M;�; s) so that the map m

q

satis�es

km

q

(u)k

B

�s;�+1

2;2

� Ckuk

B

s;�

2;2

:

Before presenting the proof of this theorem, we note that if  2 C

1

0

(R

n

), then

k uk

B

s

p;q

� C( ; �; s; p; q)kuk

B

s;�

p;q

(12)

and if u 2 B

s;c

p;q

, with supp u � fx : jxj < Rg, then

kuk

B

s;�

2;2

� C(R; �)kuk

B

s

2;2

:(13)

In each case, the stated inequality follows by observing that if  2 C

1

0

(R

n

) and

r 2 R, then u! (1 + jxj

2

)

r

 u is bounded on each Besov space.

Proof of Theorem 4. We prove the estimate of the theorem for u smooth and then

we may extend m

q

to B

s;�

2;2

by density. Let  = 1 on supprg with

 2 C

1

0

(R

n

). Then we write

jm

q

(u)(�)j =

�

�

�

�

Z

 rg � r

�

 

2

u�

g

�

dx

�

�

�

�

� k rgk

B

1�s

1;2

kr( 

2

g

�1

u�)k

B

s�1

1;2

(14)

We use that @=@x

i

: B

s

2;2

! B

s�1

2;2

, Proposition 2 (b) and then (13) to obtain

kr( 

2

g

�1

u�)k

B

s�1

1;2

� Ck 

2

u�k

B

s

1;2

� Ck uk

B

s

2;2

k �k

B

s

2;2

� Ckuk

B

s;�

2;2

k�k

B

s;���1

2;2

(15)

Using (12) and (15) in (14) gives that

jm

q

(u)(�)j � Ckrgk

B

1�s

1;2

kuk

B

s;�

2;2

k�k

B

s;���1

2;2

or that m

q

(u) is in the dual of B

s;���1

2;2

;

�

B

s;���1

2;2

�

0

= B

�s;�+1

2;2

(see [2, Corollary

6.2.8] for the duals of unweighted Besov spaces).

Remark: An examination of the above proof shows that in fact we have m

q

:

B

s;loc

2;2

! B

s;c

2;2

. We will use this in Corollary 6 to de�ne m

q

(1).
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Our next theorem considers solutions to the equation

� + 2� � r �m

q

( ) = f:

Theorem 0.5. Let g satisfy (8), (10) and (11) and let � 2 C

n

satisfy � � � = 0.

If 0 < s < 1=2; �1 < � < 0 and f 2 B

�s;�+1

2;2

, then there exists C

0

= C

0

(�;M; s; �; n)

so that for j�j > C

0

, there exists a unique solution to

� + 2� � r �m

q

( ) = f;  2 B

s;�

2;2

(16)

and this solution satis�es

k k

B

s;�

2;2

�

C

j�j

1�2s

kfk

B

�s;�+1

2;2

where C = C(n; s; �;M; �).

Proof. Consider the map  ! G

�

(m

q

( )): By Theorems 3 and 4, we have

kG

�

(m

q

( ))k

B

s;�

2;2

�

C

j�j

1�s

k k

B

s;�

2;2

Hence, if j�j is su�ciently large, then this map is a contraction on B

s;�

2;2

.

From the uniqueness of solutions to � + 2� � r = 0;  2 L

2

�

(see [10, Cor.

3.4], [4, Theorem 7.1.27]),  satis�es (16) if and only if

 = G

�

(f) + G

�

(m

q

( )):(17)

and by Theorem 3, G

�

(f) 2 B

s;�

2;2

. Thus the contraction mapping principle implies

solutions to (17) exist and are unique in B

s;�

2;2

.

Now we are ready to return to the study of L



= div r. It will be convenient

to assume that  is de�ned in all of R

n

and satis�es for some 1=2 > � > 0 and

R > 0; � > 1,

�

�1

<  < �(18)

r 2 B

1=2+2�;c

1;1

� B

1=2+�;c

1;2

for some � > 0(19)

(x) = 1; if jxj > R(20)

The embedding in (19) follows easily from the de�nition of the B

s

p;q

-norm [2, De�nition

6.2.2]. Thus if g =

p

; g satis�es the hypotheses of Theorem 5 with s =

1

2

� �.

Corollary 0.6. Suppose that  satis�es (18)-(20) and � 2 C

n

satis�es � � � = 0

and j�j > C

0

. Then there exists a solution to L



u = 0 of the form

u(x) = (x)

�1=2

(1 +  (x))e

x��

;  2 B

1=2��;�

2;2

:

Furthermore, D

2

u 2 L

2

loc

(R

n

).

Proof. Given , we construct m

q

as in (9), with g =

p

. We let  be the solution

of

� + 2� � r �m

q

( ) = m

q

(1):
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from Theorem 5. Since v = e

x��

(1 +  ) solves �v �m

q

(v) = 0 in S

0

and m

q

(v) 2

B

��1=2;c

2;2

, regularity theory for � implies v 2 B

�+3=2;loc

2;2

and in particular, rv 2 L

2

loc

.

Then a calculation shows that u = 

�1=2

v solves L



u = 0; ru 2 L

2

loc

. Finally, since

 is C

1

, regularity theory for L



implies r

2

u 2 L

2

loc

.

Theorem 0.7. Suppose that @
 is Lipschitz, and �



1

= �



2

. Ifr

i

2 C

1=2+2�

(

�


)

for some � > 0, then there exist extensions of 

i

to R

n

so that, with g

i

=

p



i

,

Z

R

n

rg

1

� r(g

�1

1

�) =

Z

R

n

rg

2

� r(g

�1

2

�); � 2 C

1

0

(R

n

):

Proof. We begin by observing that since �



1

= �



2

and @
 is Lipschitz, we have



1

= 

2

and r

1

= r

2

on @
. This result was proven for smooth conductivities in

[6] and for C

1

conductivities in Lipschitz domains by [1]. Thus we may extend 

1

and



2

to R

n

so that 

1

= 

2

in R

n

n

�


 and satis�es (18)-(20).

We let u

1

and u

2

, be solutions of L



i

u

i

= 0; ru

i

2 L

2

(
); i = 1; 2. We let

v

i

= 

1=2

i

u

i

and obtain

Z

@


u

2

�



1

u

1

=

Z






1

r(

�1=2

1

v

1

) � r(

�1=2

1

v

2

) dx

=

Z




�r

1=2

1

� r(

�1=2

1

v

1

v

2

) +rv

1

� rv

2

dx

where have used that 

1

= 

2

on @
 and the second equality depends on the product

rule.

Reversing the roles of u

1

and u

2

gives

Z

@


u

1

�



2

u

2

=

Z




�r

1=2

2

� r(

�1=2

2

v

1

v

2

) +rv

1

� rv

2

dx:

If we subtract there expressions and use that �



2

is a symmetric operator, we have

Z

@


u

1

(�



1

� �



2

)u

2

=

Z




�r

1=2

1

� r(

�1=2

1

v

1

v

2

)

+r

1=2

2

� r(

�1=2

1

v

1

v

2

) dx:

(21)

If we assume that u

1

and u

2

and de�ned in all of R

n

, then (21), our assumption that

�



1

= �



2

and that 

1

= 

2

in R

n

n

�


 give

0 =

Z

R

n

�r

1=2

1

� r(

�1=2

1

v

1

v

2

) +r

1=2

2

� r(

�1=2

2

v

1

v

2

) dx:

To choose u

1

and u

2

, we �x k 2 R

n

and then note that the argument in [10,

p. 157] and the estimate of Theorem 5 allow us to construct sequences u

(n)

1

; u

(n)

2

so

that L



i

u

(n)

i

= 0 and v

(n)

1

� v

(n)

2

! e

ix�k

in B

1=2��;loc

1;2

as n ! 1. Hence we conclude

that

Z

r

1=2

1

� r(

�1=2

1

e

ix�k

) =

Z

r

1=2

2

� r(

�1=2

2

e

ix�k

); k 2 R

n

:

This implies the conclusion of the Theorem.
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Proposition 0.8. If the conclusion of Theorem 7 holds, then g

1

= g

2

.

Proof. We have

Z

rg

1

� r

�

1

g

1

�

�

=

Z

rg

2

� r

�

1

g

2

�

�

for all � 2 C

1

0

(R

n

). Replace � by g

1

g

2

 and observe that this gives

Z

g

1

g

2

r(log g

1

� log g

2

) � r = 0:

In particular if  = log

g

1

g

2

then log

g

1

g

2

= 0 in R

n

.

This proposition amounts to observing that the equality g

�1

1

�g

1

= g

�1

2

�g

2

im-

plies that div g

1

g

2

r log(g

1

=g

2

) = 0. I thank J. Tolle for showing me this argument,

which is due to G. Alessandrini.

Proof of Theorem 1. Suppose that 

1

and 

2

are as in the Theorem and that

�



1

= �



2

. Then we conclude that

p



1

=

p



2

from Theorem 7 and Proposition 8.
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