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INTRODUCTION

In this paper, we consider the mixed problem for Laplace's equation in a

domain in 
. We assume that N and D give a decomposition of @
. By this

we mean that N [D = @
 and N \D = ;. Given functions f on D and g on

N , we wish to �nd a function u which satis�es

8

>

<

>

:

�u� k

2

u = 0; in 
;

u = f; on D;

@

�

u = g; on N:

(MP)

We are using @

�

u = ru � � to denote the outer normal derivative on @
. Note

also that for technical reasons explained below, we will consider the family of

equations �u� k

2

u = 0; k 2 R.

It is well-known that under mild restrictions on f and g, a solution to (MP )

can be found with ru 2 L

2

(
). Here, we are concerned with regularity. Our
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main result considers a class of Lipschitz domains and shows that the solution

has ru 2 L

2

(@
) when the data g is in L

2

(N) and f is in the Sobolev space

L

2;1

(D). We also obtain nontangential maximal function estimates for the

solution. This result requires that D and N meet in an angle which is strictly

less than �. See (1.1)-(1.4) for the precise hypotheses. Our main estimate for

the mixed problem, Lemma 1.7, uses the Rellich identity to bound the norm

of ru in L

2

(@
) by the norm of the Dirichlet data in L

2;1

(D) and the norm

of the Neumann data in L

2

(N).

Thus our results are similar to those obtained by Jerison and Kenig for the

Dirichlet and Neumann problems [10]. The innovation here is that we apply

the Rellich identity (see (1.10) below) with a smooth vector �eld � so that

j� � �j � � > 0 a.e. on @
, but � � � changes sign as we move from D to N .

This can only happen when the normal is discontinuous. Thus the arguments

presented below are possible only in nonsmooth domains. Furthermore, exam-

ples presented at the end of section 2 show that this is an essential restriction.

These examples give a family of domains where either our Theorem 2.1 pro-

vides the existence and regularity of a solution or it can be shown that the

estimates of Theorem 2.1 fail. This negative result leads to one interesting

technical problem. When studying boundary value problems on Lipschitz do-

mains, a standard approach (see [9, 16]) has been to approximate a nonsmooth

domain by a family of smooth domains where the boundary value problem is

well understood. Since the result of Theorem 2.1 is known to fail in smooth

domains, this approximation step is unavailable to us. We follow a di�erent

approach. To avoid the approximation step, we consider the family of equa-

tions � � k

2

; k 2 R. First, we prove estimates for the mixed problem in a

domain which lies above the graph of one Lipschitz function. Here the geome-

try is su�ciently simple that we can use the continuous dependence of certain

operators on the domain to reduce to a particularly simple case which can

be solved by symmetry. Next, we use a localization argument to transfer the

mixed problem on a bounded domain to a family of mixed problems on a �nite

collection of graph domains. This reduction is most easily executed for large

values of k. To see why this might be the case, recall that the fundamental

solution for �� k

2

decays like e

�kjxj

as jxj ! 1. Thus the o�-diagonal part

of the solution operator should be small when k is large and the problem is
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more easily localized for large k. We remove the restriction that k is large by

using the Fredholm theory.

The ideas used here are borrowed from several sources. The use of the

Rellich identity in boundary value problems has a long history, see [3, 9, 12].

However, the application to mixed problems presented here seems to be new.

The estimates presented for �� k

2

; k 6= 0, are an adaptation of arguments in

[1, 2]. The observation in Lemma 2.2 is an adaptation of ideas in [13, 14].

Finally, we note that much e�ort has been denoted to the study of the

mixed problem in polygonal or polyhedral domains. See Grisvard [7, Chapter

4] and Kondrachev [11] for example. As might be expected, one can obtain

estimates in a larger class of spaces for these domains. However, the results of

this paper apply to a larger class of domains.

x1 THE MIXED PROBLEM IN GRAPH DOMAINS.

Let � : R

n�1

! R be a Lipschitz function. A graph domain is the set


 = f(X

0

;X

n

) : X

n

> �(X

0

)g. In order to study the mixed problem, we need

a number of hypotheses on the boundary between D and N . If  : R

n�2

! R

is a Lipschitz function we de�ne N and D by

N = fX : X

1

�  (X

00

)g \ @


D = fX : X

1

<  (X

00

)g \ @


(1.1)

where we are using (X

0

;X

n

) = (X

1

;X

00

;X

n

) with X

0

2 R

n�1

;X

00

2 R

n�2

and

X 2 R

n

. When n = 2, we make the convention that  (X

00

) is some real

number. We assume that there exist �

N

� 0 and �

D

� 0 with �

N

+ �

D

> 0 and

such that � satis�es

�

X

1

� �

N

a.e. on fX

1

>  (X

00

)g

�

X

1

� ��

D

a.e. on fX

1

<  (X

00

)g:

(1.2)

Finally, we will assume that � and  are Lipschitz

kr�k

L

1

(R

n�1

)

�M (1.3)

kr k

L

1

(R

n�2

)

�M: (1.4)

Since we only need the case of k real and nonzero in these unbounded

domains, we will con�ne our treatment to this case. However, with minor

3



modi�cations these results are true for all k

2

2 C n fx+ iy : y = 0; x < 0g.

Our estimates for solutions of (MP ) will be stated using the nontangential

maximal function. For a function w de�ned on 
, the nontangential maximal

function of w; w

�

, is de�ned for P 2 @
 by

w

�

(P ) = sup

X2�

�

(P )

jw(X)j

where for � > 0, the nontangential approach region �

�

(P ) is given by

�

�

(P ) = fX 2 
 : jX � P j < (1 + �)dist (X; @
)g:

We remark that the dependence of w

�

on � is well behaved. In particular,

nontangential maximal functions de�ned using di�erent values of � have com-

parable L

p

-norms (see [15] for example). Throughout this paper, boundary

values will be taken in the following sense: We say that u = f on @
 if for a.e.

P 2 @
,

lim

X!P

X2�

�

(P )

u(X) = f(P ):

Again, except for a set of measure zero, the existence of this limit is indepen-

dent of the aperture �. By the outer normal derivative, we mean �(P ) �ru(P )

where the restriction of ru to @
 is de�ned as above.

Finally, we introduce notation for function spaces. We use L

2

(N) for the

space of square integrable functions (with respect to surface measure) on N .

We let L

2;1

(D) denote the space of functions on D with one derivative in L

2

.

More precisely, we say that f 2 L

2;1

(D) if f(X

0

; �(X

0

)) is in L

2;1

(fX

0

: X

1

<

 (X

00

)g).

If u is some extension of f to 
, we let

r

tan

f = ru� � � ru �

denote the tangential gradient of f . Of course, this quantity is independent of

the particular extension u. With this notation, we will use the norm

kfk

2

L

2;1

(@
)

=

Z

@


f

2

+ jr

tan

f j

2

dP:

Our main result for graph domains is
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Theorem 1.5. Let 
 be a graph domain and suppose that 
; N and D are as

in (1.1)-(1.4). Let f 2 L

2;1

(D) and g 2 L

2

(N), then for each k 2 R n f0g,

there exists a unique solution to (MP ) and the solution u satis�es

Z

@


(ru

�

)

2

+ k

2

(u

�

)

2

dP � C

�

Z

D

k

2

f

2

+ jr

tan

f j

2

dP +

Z

N

g

2

dP

�

(1.6)

The constant in this estimate depends only on �

N

, �

D

; kr �k

1

, kr k

1

and

the cone opening �. In particular, it is independent of k.

Our main estimate for the mixed problem is contained in the following

Lemma.

Lemma 1.7. Suppose that 
; N and D are as in (1.1)-(1.4) and that k 2

R n f0g. If �u� k

2

u = 0; (ru)

�

+ u

�

2 L

2

(@
), then we have

Z




k

2

u

2

+ jruj

2

dP � C

�

Z

D

k

2

u

2

+ jr

tan

uj

2

dP +

Z

N

@

�

u

2

dP

�

where the constant depends on �

N

, �

D

; kr�k

1

and kr k

1

.

Proof. We write down three identities.

Z




k

2

u

2

+ jruj

2

dX =

Z

@


u@

�

u dP (1.8)

Z

@


u

2

e

n

� � dP = 2

Z




u@

x

n

u dX (1.9)

Z

@


jruj

2

� � � � 2@

�

u� � ru dP = �2

Z




k

2

u� � ru: (1.10)

In (1.10), � 2 R

n

is a constant vector. Each of these is proven by a straight-

forward application of the Gauss divergence theorem. The a priori assumption

that u

�

+ (ru)

�

2 L

2

(@
) imply that the boundary terms at in�nity vanish.

Note also that (1.8) is Green's �rst identity and the third identity (1.10) is the

Rellich identity.

If, in the third identity, we let � be the vector (1; 0

00

; (�

D

� �

N

)=2), then

(1.2) implies that

� � �(Q) � �

1

2

(�

D

+ �

N

)(1 + kr�k

2

1

)

�1=2

; for a.e. Q 2 D

� � �(Q) �

1

2

(�

D

+ �

N

)(1 + kr�k

2

1

)

�1=2

; for a.e. Q 2 N:

(1.11)
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This sign change is crucial in our application of the Rellich identity to (MP ).

We decompose � = �

tan

+��� � into tangential and normal components. Using

this decomposition of � and (1.11) in (1.10), adding

Z

N

k

2

u

2

to both sides and

rearranging terms gives

Z

D

j@

�

uj

2

dP +

Z

N

k

2

u

2

+ jr

tan

uj

2

dP

� C

Z

D

jr

tan

uj

2

+ 2�

tan

� ru @

�

u dP

+

Z

N

(@

�

u)

2

+ k

2

u

2

+ 2�

tan

� ru @

�

u dP � 2

Z




k

2

u� � ru dX:

We apply Young's inequality (2ab � �a

2

+�

�1

b

2

) to the cross terms �

tan

�ru@

�

u

and absorb the tangential gradient on D and the normal derivative on N into

the lefthand side. This gives

Z

D

j@

�

uj

2

dP +

Z

N

k

2

u

2

+ jr

tan

uj

2

dP

� C

Z

D

jr

tan

uj

2

dP +

Z

N

(@

�

u)

2

+ k

2

u

2

dP

�2

Z




k

2

u� � ru dX:

(1.12)

We apply Young's inequality to the volume integral in (1.12) and then (1.8)

which gives

�

�

�

�

Z




k

2

u� � ru dX

�

�

�

�

�

j�j

2

Z




jkj

3

u

2

+ jkjjruj

2

dX

�

j�j

2

Z

@


jkju@

�

u dP:

(1.13)

Also, using that �e

n

� � � � > 0, (1.9) and (1.8) gives

Z

@


k

2

u

2

dP � C

Z




k

2

u@

x

n

u dX

� C

0

Z




jkj

3

u

2

+ jkj jruj

2

dX

= C

0

Z

@


jkju@

�

u dP:

(1.14)
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Substituting the observations (1.13) and (1.14) into (1.12), breaking the inte-

gral of u@

�

u into integrals over D and N and using Young's inequality gives

Z

D

@

�

u

2

dP +

Z

N

k

2

u

2

+ jr

tan

uj

2

dP

� C

�

Z

D

jr

tan

uj

2

+

k

2

�

u

2

+ �@

�

u

2

dP +

Z

N

�

1 +

1

�

�

@

�

u

2

+ �k

2

u

2

dP

�

:

Choosing � to be small establishes the Lemma. 2

Next, we recall some results for the Dirichlet and Neumann problem which

will be useful to us below. When k = 0, these results are due to Jerison and

Kenig [9] and Verchota [16]. (See also [5] for a treatment of graph domains.)

The extension to certain nonzero k is treated in the author's joint work with

Shen [2]. The argument is similar to the proof of Lemma 1.7.

Theorem A. Let 
 be a graph domain fX : X

n

> �(X

0

)g de�ned by a

Lipschitz function � and let k 2 R. For each f 2 L

2;1

(@
), there exists a

solution to the Dirichlet problem

8

>

<

>

:

�u� k

2

u = 0; in 


u = f; on @


and this solution satis�es

Z

@


(ru

�

)

2

+ k

2

(u

�

)

2

dP � C

Z

@


k

2

f

2

+ jr

tan

f j

2

dP:

If g 2 L

2

(@
), then the Neumann problem

8

>

<

>

:

�u� k

2

u = 0; in 


@

�

u = g; on @


has a solution which satis�es

Z

@


(ru

�

)

2

+ k

2

(u

�

)

2

dP � C

Z

@


g

2

dP:

The constants in the above two estimates depend only on kr�k

1

and �. Fur-

thermore, these solutions are unique in the class of functions with (ru)

�

2

L

2

(@
) and u

�

2 L

2

(@
). Finally, consider the map f ! S

D

f � ru where u

solves the Dirichlet problem with data f and the map g ! S

N

g � ru where

7



u solves the Neumann problem with data g. Then each of these maps is a

continuous function of �, the function which de�nes @
, in the sense that

if � : @
 ! R

n�1

is the map �(X

0

; �(X

0

)) = X

0

, then � ! �

�1

� S

D

� �

and � ! �

�1

� S

N

� � are continuous from the space of Lipschitz functions

with norm kr�k

1

into the space of bounded operators from L

2;1

(R

n�1

) and

L

2

(R

n�1

) (respectively L

2

(R

n�1

) into L

2

(R

n�1

)) with the operator norm.

The statement regarding the continuous dependence of the operator ap-

pears in [4] where it is attributed to A. McIntosh. The proof of this fact relies

on G. Verchota's representation of solutions by potential operators which de-

pend continuously on �. (See Hofmann [8], for a detailed treatment of the

continuous dependence of the potential operators on �.)

The next step in the proof of Theorem 1.5 is to consider the special case

where one of the faces lies in a hyperplane. Before proceeding we introduce

a characterization of rotations of graph domains. A set 
 is of the form

fX : X � � > F (X � X � � �)g for some unit vector � 2 R

n

and Lipschitz

function F : R

n

! R if and only if for some � > 0 and all P 2 @
; 
 satis�es

the cone conditions

fX : 0 < (X � P ) � � < (1 + �)jX � P jg � 


fX : 0 < (P �X) � � < (1 + �)jX � P jg �

�




c

:

Lemma 1.15. Suppose that 
, N and D are as in (1.1)-(1.4) and that on

the set fX

0

: X

1

>  (X

00

)g; � is the linear function �(X

0

) = �

N

X

1

. Then for

each k 2 R n f0g, the problem (MP ) has a solution and this solution satis�es

Z

@


(ru

�

)

2

+ k

2

(u

�

)

2

dP � C

�

Z

N

g

2

dP +

Z

D

jr

tan

f j

2

+ k

2

f

2

dP

�

:

The constant depends on �

N

, �

D

, kr�k

1

, kr k

1

and � This solution is

unique among the class of u with ru

�

+ u

�

2 L

2

(@
).

Proof. Uniqueness follows from the energy estimate in Lemma 1.7. To estab-

lish existence, it su�ces to consider the case where the Neumann data, g, is

zero. The su�ciency follows from Theorem A.

To solve (MP ) with g = 0, we introduce the reection in the hyperplane

containing N . Let R(X) = X � 2e

N

�Xe

N

where e

N

= (��

N

; 0

00

; 1)=

q

1 + �

2

N

is the unit normal to the hyperplane containing N . We let

~


 be the interior of

8



the set

�


 [R(

�


). One can show that

~


 satis�es the characterization of graph

domains given before this Lemma with � = (1; 0

00

; �

N

)=

q

1 + �

2

N

. Using R, we

extend the Dirichlet data f to a function de�ned on @

~


 by letting

~

f(P ) =

8

>

<

>

:

f(P ); P 2 D

f(R(P )); R(P ) 2 D:

Let ~u be the solution to the Dirichlet problem with data

~

f given by Theorem

A. Since

~

f �R =

~

f , it follows that if ~u is the solution to the Dirichlet problem

in

~


 with data

~

f , then ~u � R = ~u. Furthermore, we have e

N

� r~u = 0 on

N . Hence, if we let u = ~uj




, then u will solve (MP ) with Neumann data

g = 0 and Dirichlet data f 2 L

2;1

(D). The nontangential maximal function

estimates for u on @
 follow from the corresponding estimates for ~u on @

~


. 2

Our next Lemma provides a proof of the existence part of Theorem 1.5.

Lemma 1.16. Let 
; N and D be as in (1.1)-(1.4) and let k 2 R. Then

for each pair (f; g) 2 L

2;1

(D)� L

2

(N), there exists a solution to (MP ) which

satis�es the estimate (1.6).

Proof. As in the previous Lemma, we may assume that g = 0. We consider

the map A : L

2

(D) ! L

2;1

(D) given by

Ah = u

h

j

D

where u

h

is the solution to the following Neumann problem provided by The-

orem A.

8

>

<

>

:

�u� k

2

u = 0; in 


@

�

u = 0; on N

@

�

u = h; on D.

Given Theorem A, solving (MP ) is equivalent to showing the map A is bijec-

tive. Of course, the uniqueness of solutions to the Neumann problem implies

that A is injective. In order to show that A is surjective, we let

�

0

(X

0

) = max f�

N

X

1

; (�

N

+ �

D

) (X

00

)� �

D

X

1

g

and set �

t

= t�+ (1 � t)�

0

. As before, we set N

t

= @


t

\ fX : X

1

�  (X

00

)g

and D

t

= @


t

\fX : X

1

<  (X

00

)g. We let �

t

: @


t

! R

n�1

be the projection

�

t

(X

0

; �

t

(X

0

)) = X

0

. Observe that the family of 


t

; N

t

and D

t

; 0 � t � 1,

9



satisfy the conditions (1.1)-(1.4) with constants independent of t. In fact, the

dividing surface betweenD

t

and N

t

projects under �

t

to the surface fX

0

: X

1

=

 (X

00

)g which is independent of t. We let

~

A

t

: L

2

(�

t

(D

t

))! L

2;1

(�

t

(D

t

)) be

the operator given by

~

A

t

(h) = [A

t

(f � �

�1

t

)] � �

t

where A

t

is the Neumann to Dirichlet map on @


t

. The surjectivity of

~

A

1

and

hence A = A

1

will follow from the following facts. (See [6, Theorem 5.2]).

1)

~

A

0

is surjective. 2) t !

~

A

t

is continuous from [0; 1] into bounded

operators from L

2

(�

t

(D

t

)) to L

2;1

(�

t

(D

t

)). 3)

Z

D

t

k

2

(A

t

h)

2

+ (r

tan

A

t

h)

2

dP �

c

Z

D

t

h

2

dP .

Fact 1) is a restatement of Lemma 1.15, 2) is contained in Theorem A and

3) is a consequence of Lemma 1.7.

According to 3) above, the norm of A

�1

is determined by the constant in

Lemma 1.7. This and Theorem A give the nontangential maximal function

estimates of Theorem 1.5. 2

Proof of Theorem 1.5. The existence assertion in Theorem 1.5 is in Lemma

1.16. The uniqueness follows from the energy estimate (1.8) in Lemma 1.7. 2

x2 BOUNDED DOMAINS.

We now turn our attention to proving existence and regularity of solutions

to (MP ) in bounded domains. We will use Theorem 1.5 as our main tool. As

mentioned in the Introduction, it is an important technical point that we have

the estimates of Theorem 1.5 for large k. For these values of k, it is simpler to

use a partition of unity to localize the problem since the estimate of

Z

@


k

2

u

2

in (1.6) can be used to control errors that arise in the localization process.

We begin by giving a precise description of the boundary value problems

we will study. Let 
 be a bounded connected open set and assume that N and

D form a decomposition of @
 with D nonempty. We assume that there is a

�nite collection of points fP

i

: i = 1; :::;Mg and r > 0 so that @
 �

M

[

i=1

B

r

(P

i

)

and that for each i, there is a domain 


i

, with boundary decomposition N

i

;D

i

,

10



which are orthogonal motions of graph domains satisfying (1.1)-(1.4) and so

that


 \ B

2r

(P

i

) = 


i

\B

2r

(P

i

);

D \B

2r

(P

i

) = D

i

\B

2r

(P

i

);

N \B

2r

(P

i

) = N

i

\B

2r

(P

i

):

Our main result is:

Theorem 2.1. Let 
; N and D be as described above. Then the problem

(MP ) (with k = 0) has a solution which satis�es

Z

@


(ru

�

)

2

dP � C

�

Z

N

g

2

dP +

Z

D

jr

tan

f j

2

+ f

2

dP

�

:

The constant C is determined by geometric properties of the domain. (See the

remarks following (2.12).) This solution is unique among the class of harmonic

functions with ru

�

2 L

2

(@
).

Our �rst Lemma will be used in conjunction with the Fredholm theory

to reduce the solution of (MP ) with k = 0 to the solution of (MP ) with k

large. This lemma requires only that 
 be a bounded Lipschitz domain. This

means that there is a �nite collection of orthogonal motions of graph domains

f


i

: i = 1; :::;mg and points P

i

2 @
 so that


 \ B

2r

(P

i

) = 


i

\B

2r

(P

i

)

@
 \B

2r

(P

i

) = @


i

\B

2r

(P

i

):

Lemma 2.2. Let 
 be a bounded Lipschitz domain for k 2 R, consider the

map S

k

: L

2;1

(@
)! L

2

(@
) given by S

k

f = @

�

u where u is the solution of

8

>

<

>

:

�u� k

2

u = 0; in 


u = f; on @
.

For each pair of real numbers, k

1

and k

2

, the map S

k

1

� S

k

2

is compact.

Proof. Let f 2 L

2;1

(@
) and let u

i

be the solution of (� � k

2

i

)u

i

= 0 with

Dirichlet data f . According to Theorem A (extended to bounded domains),

we have ru

�

i

2 L

2

(@
). If we let w = u

1

� u

2

, then the Rellich identity gives

11



the estimate

Z

@


j@

�

wj

2

dP � C

�

Z




jrwj jk

2

1

u

1

� k

2

2

u

2

j+ jrwj

2

dX

�

: (2.3)

(See [2, 9]).

The nontangential maximal function estimates for rw imply that

Z




�

jrwj

2

dX � �C

k

1

;k

2

Z

@


jrf j

2

+ f

2

dP

where 


�

= fX 2 
 : dist(X; @
) < �g. This and easy interior compactness

properties of solutions of (�� k

2

i

)u

i

= 0 imply that the map f ! rw � Af

is a compact map from L

2;1

(@
)! L

2

(
). Hence, we may rewrite (2.3) as

kS

k

1

f � S

k

2

fk

2

L

2

(@
)

� C

k

1

;k

2

(kAfk

L

2

(
)

kfk

L

2

(@
)

+ kAfk

2

L

2

(@
)

):

This and the compactness of A imply the Lemma. 2

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. We let �

i

; i = 1; :::;M be a smooth partition of

unity on @
 which is subordinate to the cover B

r

(P

i

). For i = 1; ::;M we

let v

i

be the solution to (MP ) in 


i

with data �

i

f on D

i

and �

i

g on N

i

. For

each i, we let �

i

be a smooth cuto� function which is one on B

r

(P

i

) and is

supported in B

2r

(P

i

). We let u

1

=

M

X

i=1

�

i

v

i

and observe that u

1

� f = 0 on D

and on N; @

�

u

1

� g =

M

X

i=1

v

i

@

�

�

i

. Hence,

Z

N

j@

�

u

1

� gj

2

dP � C

X

i

Z

N

i

v

2

i

dP

�

C

k

2

�

Z

N

g

2

dP +

Z

D

(1 + k

2

)f

2

+ jr

tan

f j

2

dP

�

:

(2.4)

Where we have used the estimate of Theorem 1.5 to bound the L

2

(N

i

)-norm of

v

i

by the data of v

i

on @


i

. Thus for large k, the data of u

1

closely approximates

the desired data f and g. Unfortunately,

�u

1

� k

2

u

1

=

X

i

(v

i

��

i

+ 2r�

i

� rv

i

) � F 6= 0:
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We let E

k

be the fundamental solution for � � k

2

and let u

2

= E

k

� F . We

claim that

Z

@


k

2

u

2

2

+ jru

2

j

2

�

C

k

2

�

Z

N

g

2

dP

+

Z

D

jr

tan

f j

2

+ k

2

f

2

dP

�

; jkj � 1:

(2.5)

To establish the claim (2.5), we begin by observing that

jkj

Z




i

k

2

v

2

i

+ jrv

i

j

2

dP � C

�

Z

D

i

k

2

f

2

i

+ jr

tan

f

i

j

2

dP +

Z

N

i

g

2

i

dP

�

: (2.6)

which follows from the energy inequality (1.8), Young's inequality (2ab �

a

2

+ b

2

) and the estimate of Lemma 1.7. Next observe that for multiindices

�, with j�j � 2, the map h ! @

�

X

E

k

� h is bounded on L

2

(R

n

) with norm

Cjkj

2�j�j

k@

�

x

E

k

� hk

L

2

(R

n

)

� Cjkj

j�j�2

khk

L

2

(R

n

)

:

Hence, we have the estimate

Z

R

n

k

4

u

2

2

+ k

2

jru

2

j

2

+ jr

2

u

2

j

2

dX

� C

X

i

Z




i

v

2

i

+ jrv

i

j

2

:

(2.7)

Next, observe that if � :

�


! R

n

is C

1

, then

Z

@


u

2

2

� � � dP =

Z




2� � ru

2

u

2

+ u

2

2

div � dX: (2.8)

On a Lipschitz domain, we may choose � so that � � � � � > 0 a.e. on @
.

Thus using Young's inequality and (2.7) followed by (2.6) we obtain

Z

@


k

2

u

2

2

dP � Cjkj

Z




jru

2

j

2

+ k

2

u

2

2

dX

�

C

jkj

�

M

X

i=1

Z




i

v

2

i

+ jrv

i

j

2

dX

�

C

k

2

M

X

i=1

�

Z

N

i

g

2

i

dP +

Z

D

i

jr

tan

f

i

j

2

+ k

2

f

2

i

dP

�

:

A similar argument gives the same bound for

Z

@


jru

2

j

2

dP . This establishes

the claim (2.5).
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Now let u = u

1

� u

2

. We have (�� k

2

)u = 0 and the estimates (2.4) and

(2.5) imply that

Z

N

(@

�

u� g)

2

dP +

Z

D

jr

tan

u� f j

2

+ k

2

(u� f)

2

dP

�

C

k

2

�

Z

N

g

2

dP +

Z

D

k

2

f + jr

tan

(u� f)j

2

dP

�

; jkj � 1:

(2.9)

Finally, we claim that (ru)

�

and u

�

are in L

2

(@
). This is true for u

1

by

Theorem 1.5. For u

2

, we have r

2

u

2

2 L

2

(
) and this implies that ru

�

2

and

u

�

2

are in L

2

(@
). (See [2, Lemma 1.2]). The estimate (2.9) implies that the

map (f; g)! (uj

D

; @

�

uj

N

) is invertible on the space L

2;1

(D)� L

2

(N), when k

is large. Thus we may solve (MP ) in bounded domains for k su�ciently large.

To remove the restriction that k is large, we consider the map �

k

: L

2;1

(N) !

L

2

(N) given by �

k

f = @

�

uj

N

where u is the solution to the Dirichlet problem

8

>

<

>

:

(�� k

2

)u = 0; in 


u = f; on N

u = 0; on D.

We write �

0

= �

k

+�

0

��

k

for some k large and will show that �

0

is invertible.

Note �rst that the uniqueness of solutions to (MP ) implies that �

0

is injective.

Next, observe that the solvability of (MP ) for large k which has established

in the previous paragraph implies that the map �

k

is invertible and thus of

index zero. Lemma 2.2 asserts that �

k

� �

0

is compact and hence �

0

is also

of index zero. Thus �

0

is invertible and we may solve (MP ) when k = 0. Of

course, this argument will also work for other values of k besides 0.

This soft argument does not give good estimates for the nontangential

maximal function of the solution. We will show that such estimates do in fact

hold. For k = 0, we have

Z

@


(ru

�

)

2

dP � C

�

Z

D

f

2

+ jr

tan

f j

2

dP +

Z

N

g

2

dP

�

where the constant depends on explicit geometric quantities. To see this,

observe that we can construct a smooth vector �eld � :

�


 ! R

n

which

satis�es

�(Q) � �(Q) � � > 0 on D

and

�(Q) � �(Q) � �� < 0 on N .
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This is done by choosing the constant vector used in (1.10) for each graph

domain 


i

and then patching together with a partition of unity. Using the

vector �eld � in the Rellich identity and (2.8) in place of (1.9) we can mimic

the proof of Lemma 1.7 in 
, and show that if �u = 0; (ru)

�

2 L

2

(@
), then

Z

@


jruj

2

dP � C

�

Z

D

jr

tan

uj

2

dP +

Z

N

@

�

u

2

dP +

Z




jruj

2

dX

�

: (2.10)

The energy estimate (1.8) gives

2

Z




jruj

2

dX = 2

Z




u@

�

u dP �

Z

D

1

�

u

2

+ �(@

�

u)

2

dP

+

Z

N

1

�

(@

�

u)

2

+ �u

2

dP

(2.11)

Since

Z

N

u

2

dP � C

�

Z

D

u

2

dP +

Z




jruj

2

dX

�

(2.12)

when 
 is connected, we may conclude from (2.10), (2.11) and (2.12) that

Z

@


jruj

2

� C

�

Z

D

u

2

+ jr

tan

uj

2

dP +

Z

N

@

�

u

2

dP

�

:

The constant in this estimate depends only on the vector �elds � and � and the

constant in the Poincar�e inequality (2.12). Finally, the estimates of Dahlberg

[9] give that

Z

@


(ru

�

)

2

dP � C

Z

@


jruj

2

dP

where the constant depends only on the Lipschitz character of 
. 2

The result of Theorem 2.1 may be viewed as a regularity result for the

weak solution of (MP) constructed using energy estimates: If the boundary

data (f; g) lie in L

2;1

(D) � L

2

(N), then the solution u lies not only in the

energy space, L

2;1

(
), but also ru 2 L

2;1

(@
). We give a simple example

which shows that this regularity may fail in some Lipschitz domains.

Examples. Let 0 < � < 2� and consider the sector S

�

= fz : 0 < argz < �g.

The function r

2�=�

sin (��=2�) is harmonic in this sector, satis�es @

�

u = 0 on

fre

i�

: r > 0g and u = 0 on fz : Im z = 0; Re z > 0g. If we let 


�

=

S

�

\fjzj < 1g; N

�

= fre

i�

: 0 � r � 1g and D

�

= @


�

nN

�

, then 


�

; N

�

;D

�

satisfy the hypotheses of Theorem 2.1, except near z = 0 when 2� > � � �.

If we let u

�

= r

�=2�

sin (��=2�) on 


�

, then @

�

u

�

2 L

2

(N

�

), u

�

2 L

2

(D

�

)
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but if � > �, then ru

�

62 L

2

(@


�

). Yet we still have ru

�

2 L

2

(


�

) for all

�, hence u

�

is the unique solution of (MP) in L

2;1

(


�

). Thus the conclusion

of Theorem 2.1 fails in the family of domains 


�

precisely when 


�

violates

(1.2).

Another remark indicating the correctness of the class of domains consid-

ered in Theorem 2.1 is an elementary observation of C. Kenig. Suppose that

Theorem 2.1 holds for (MP ) on a given 
 with N and D a decomposition of

@
. If u is the solution of (MP ), with data f on D and data 0 on N , then

the map f ! uj

@


provides an extension operator from L

2;1

(D) into L

2;1

(@
).

It is well-known that the existence of an extension operator requires some

conditions on D. One well-known su�cient condition for the existence of an

extension operator for domains in R

n

is that the domain be Lipschitz.

We also mention several questions raised by Theorem 2.1. 1) Is it possible

to obtain similar results when f 2 L

p;1

(D) and g 2 L

p

(N)? The examples

given above indicate that for p < 2, one should be able to obtain regular-

ity results in domains with nonconvex or \re-entrant corners". 2) Can one

study (MP ) in domains where the decomposition of @
 into D and N is more

complicated? For example, what can be said about (MP ) in the pyramid

jX

1

j+ jX

2

j < X

3

if we specify Dirichlet and Neumann data on alternate faces.
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