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INTRODUCTION

In this paper, we consider the mixed problem for Laplace’s equation in a
domain in . We assume that N and D give a decomposition of 9€2. By this
we mean that NUD = 9Q and NN D = (. Given functions f on D and ¢ on

N, we wish to find a function v which satisfies

u=f, on D, (MP)

Au—FKk*u=0, inQ,
ayu297 on N.

We are using d,u = Vu - v to denote the outer normal derivative on df2. Note
also that for technical reasons explained below, we will consider the family of
equations Au — k*u =0, k¢ R.

It is well-known that under mild restrictions on f and g, a solution to (M P)

can be found with Vu € L*(2). Here, we are concerned with regularity. Our
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main result considers a class of Lipschitz domains and shows that the solution
has Vu € L*(99Q) when the data ¢ is in L?(N) and f is in the Sobolev space
L*Y(D). We also obtain nontangential maximal function estimates for the
solution. This result requires that D and N meet in an angle which is strictly
less than 7. See (1.1)-(1.4) for the precise hypotheses. Our main estimate for
the mixed problem, Lemma 1.7, uses the Rellich identity to bound the norm
of Vu in L*(9€) by the norm of the Dirichlet data in L*!(D) and the norm
of the Neumann data in L*(N).

Thus our results are similar to those obtained by Jerison and Kenig for the
Dirichlet and Neumann problems [10]. The innovation here is that we apply
the Rellich identity (see (1.10) below) with a smooth vector field a so that
lao-v| > 6 > 0 a.e. on 99, but « - v changes sign as we move from D to N.
This can only happen when the normal is discontinuous. Thus the arguments
presented below are possible only in nonsmooth domains. Furthermore, exam-
ples presented at the end of section 2 show that this is an essential restriction.
These examples give a family of domains where either our Theorem 2.1 pro-
vides the existence and regularity of a solution or it can be shown that the
estimates of Theorem 2.1 fail. This negative result leads to one interesting
technical problem. When studying boundary value problems on Lipschitz do-
mains, a standard approach (see [9, 16]) has been to approximate a nonsmooth
domain by a family of smooth domains where the boundary value problem is
well understood. Since the result of Theorem 2.1 is known to fail in smooth
domains, this approximation step is unavailable to us. We follow a different
approach. To avoid the approximation step, we consider the family of equa-
tions A — k?, k € R. First, we prove estimates for the mixed problem in a
domain which lies above the graph of one Lipschitz function. Here the geome-
try is sufficiently simple that we can use the continuous dependence of certain
operators on the domain to reduce to a particularly simple case which can
be solved by symmetry. Next, we use a localization argument to transfer the
mixed problem on a bounded domain to a family of mixed problems on a finite
collection of graph domains. This reduction is most easily executed for large
values of k. To see why this might be the case, recall that the fundamental

—k|z

solution for A — k% decays like e ¥”| as |2| — oo. Thus the off-diagonal part

of the solution operator should be small when k is large and the problem is



more easily localized for large k. We remove the restriction that & is large by
using the Fredholm theory.

The ideas used here are borrowed from several sources. The use of the
Rellich identity in boundary value problems has a long history, see [3, 9, 12].
However, the application to mixed problems presented here seems to be new.
The estimates presented for A — k* k # 0, are an adaptation of arguments in
[1, 2]. The observation in Lemma 2.2 is an adaptation of ideas in [13, 14].

Finally, we note that much effort has been denoted to the study of the
mixed problem in polygonal or polyhedral domains. See Grisvard [7, Chapter
4] and Kondrachev [11] for example. As might be expected, one can obtain
estimates in a larger class of spaces for these domains. However, the results of

this paper apply to a larger class of domains.

§1 THE MIXED PROBLEM IN GRAPH DOMAINS.

Let ¢ : R"' — R be a Lipschitz function. A graph domain is the set
Q={(X"X,): X, >o(X)}. In order to study the mixed problem, we need
a number of hypotheses on the boundary between D and N. If ¢y : R""? = R
is a Lipschitz function we define N and D by

N={X: X;>¢X")}NnoQ
(1.1)
D={X: X;<¢X"}noQ
where we are using (X', X,,) = (X1, X", X,,) with X’ € R*™!, X" € R"? and
X € R". When n = 2, we make the convention that (X"”) is some real
number. We assume that there exist éy > 0 and 6p > 0 with 5 +dp > 0 and
such that ¢ satisfies

¢ox, > oy a.e.on {X; > (X"}

(1.2)
ox, < —=bp a.e.on {X; < (X"}
Finally, we will assume that ¢ and 1 are Lipschitz
IVl o1y < M (1.3)
V| poo(rn—2) < M. (1.4)

Since we only need the case of k real and nonzero in these unbounded

domains, we will confine our treatment to this case. However, with minor
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modifications these results are true for all k* € C\ {z +iy: y =0, z <0}
Our estimates for solutions of (M P) will be stated using the nontangential
maximal function. For a function w defined on €, the nontangential maximal
function of w, w*, is defined for P € 0 by

wi(P)= sup |w(X)|
X€eT(P)

where for o > 0, the nontangential approach region I',(P) is given by
[o(P)={X€Q: | X —=P|<(l+a)dist(X,00)}.

We remark that the dependence of w* on « is well behaved. In particular,
nontangential maximal functions defined using different values of o have com-
parable LP-norms (see [15] for example). Throughout this paper, boundary
values will be taken in the following sense: We say that v = f on 99 if for a.e.
P €09,
lim w(X)= f(P).

o (X) = f(P)
Again, except for a set of measure zero, the existence of this limit is indepen-
dent of the aperture . By the outer normal derivative, we mean v(P)- Vu(P)
where the restriction of Vu to 92 is defined as above.

Finally, we introduce notation for function spaces. We use L?*(N) for the
space of square integrable functions (with respect to surface measure) on N.
We let L*'(D) denote the space of functions on D with one derivative in L.
More precisely, we say that f € L*Y(D) if f(X',o(X")) isin L*'({X": X, <
P(XY).

If u is some extension of f to 2, we let
Vienf =Vu—v-Vurv

denote the tangential gradient of f. Of course, this quantity is independent of

the particular extension w. With this notation, we will use the norm

1o om = [ %+ Vi ST P

Our main result for graph domains is



Theorem 1.5. Let 2 be a graph domain and suppose that Q, N and D are as
in (1.1)-(1.4). Let f € L*Y(D) and g € L*(N), then for each k € R\ {0},

there exists a unique solution to (M P) and the solution u satisfies

/ag(vu*)Q + kQ(u*)Q dP < C (/D k2 4 IV o f|2 dP + /Ngz dP) (1.6)

The constant in this estimate depends only on én, ép, ||V élleo, ||V e and
the cone opening a. In particular, it is independent of k.
Our main estimate for the mixed problem is contained in the following

Lemma.

Lemma 1.7. Suppose that Q, N and D are as in (1.1)-(1.4) and that k €
R\ {0} If Au—FK*u=0, (Vu)*+u*e€ L*(90), then we have

[ B+ [V ap < (/ B+ [Vl dP + [ o dP)
Q D N

where the constant depends on dn, ép, ||V@|lew and ||V s.

Proof. We write down three identities.

/ E2u? + |Vu|2 dX :/ ud,u dP (1.8)
Q 20
/ u’e, v dP = 2/ U0y, u dX (1.9)
20 Q
/ VulPa-v —20,ua-VudP = —2/ Euo - Vu. (1.10)
20 Q

In (1.10), a € R™ is a constant vector. Each of these is proven by a straight-
forward application of the Gauss divergence theorem. The a priori assumption
that u* 4 (Vu)* € L?*(09) imply that the boundary terms at infinity vanish.
Note also that (1.8) is Green’s first identity and the third identity (1.10) is the
Rellich identity.

If, in the third identity, we let o be the vector (1,0”,(dp — dn)/2), then
(1.2) implies that

a-v(Q) < —%(517 +63)(1+ || Vo2 )~Y2, forae. Q€D
(1.11)
a-v(Q) > 1(0p +on)(1 + IVo||2)~"/2, for a.e. Q € N.



This sign change is crucial in our application of the Rellich identity to (M P).
We decompose o = a4, +a-v v into tangential and normal components. Using

this decomposition of a and (1.11) in (1.10), adding / k?u® to both sides and
N

rearranging terms gives

/|&,u|2dP—|—/ 202 |Vian w2 dP
D N
< C/ |V iantt|* + 200440 - Vu d,u dP
D

—I—/ (O,u)? + k*u® + 2044, - Vu dyu dP — 2/ E*ua - Vu dX.
N Q

We apply Young’s inequality (2ab < ea®+¢e1b?) to the cross terms vy, - Vud,u
and absorb the tangential gradient on D and the normal derivative on N into

the lefthand side. This gives
/|&,u|2dP—|—/ K2u? 4 |Vian uf2 dP
D N
< 0/ IV antt|2 dP +/ (Dyu)? + k*u? dP (1.12)
D N

—2/ Euo - VudX.
Q

We apply Young’s inequality to the volume integral in (1.12) and then (1.8)

which gives

[ Fua - u dX‘ < 2L [kt + K[l dx
Q Q

(1.13)
< %/ |k|ud,u dP.
1)
Also, using that —e, - v >4 >0, (1.9) and (1.8) gives
/ K2u?dP < C/ K2ud, u dX
1) Q
< 0'/ EPu? + [k| [Val? dX (1.14)
Q

= C’/ |k|ud,u dP.
1)



Substituting the observations (1.13) and (1.14) into (1.12), breaking the inte-

gral of ud,u into integrals over D and N and using Young’s inequality gives

/ ou®dP + / E*u® 4+ |Vig, ul? dP
D N

< [/ |V tam u|* + %uz + ed,u® dP —I—/ (1 + %) d,u? + ek*u? dP| .
D N

Choosing € to be small establishes the Lemma. O

Next, we recall some results for the Dirichlet and Neumann problem which
will be useful to us below. When k& = 0, these results are due to Jerison and
Kenig [9] and Verchota [16]. (See also [5] for a treatment of graph domains.)
The extension to certain nonzero k is treated in the author’s joint work with

Shen [2]. The argument is similar to the proof of Lemma 1.7.

Theorem A. Let Q be a graph domain {X : X, > ¢(X')} defined by a
Lipschitz function ¢ and let k € R. For each f € L**(0Q), there exists a
solution to the Dirichlet problem

Au — k*u =0, in ()
u=f, on 09

and this solution satisfies
/ (Vu)? + k()2 dP < 0/ K22 4 Vo fI? dP.
a9 a9
If g € L*(09), then the Neumann problem
Au — k*u =0, in ()
dyu = g, on 09
has a solution which satisfies

/ (Vu)? + K2 ()2 dP < C [ g*dP.
N N

The constants in the above two estimates depend only on ||V @||eo and o, Fur-

thermore, these solutions are unique in the class of functions with (Vu)* €
L*(09Q) and u* € L*(0R). Finally, consider the map f — Spf = Vu where u
solves the Dirichlet problem with data f and the map g — Syg = Vu where
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u solves the Neumann problem with data g. Then each of these maps is a
continuous function of ¢, the function which defines 0S), in the sense that
if w00 — R s the map (X', (X)) = X/, then ¢ — 7~ toSponm
and ¢ — 71 o Sy om are continuous from the space of Lipschitz functions
with norm |V@||w into the space of bounded operators from L*'(R"™') and
L*(R™Y) (respectively L*(R™™) into L*(R"™1)) with the operator norm.

The statement regarding the continuous dependence of the operator ap-
pears in [4] where it is attributed to A. McIntosh. The proof of this fact relies
on G. Verchota’s representation of solutions by potential operators which de-
pend continuously on ¢. (See Hofmann [8], for a detailed treatment of the
continuous dependence of the potential operators on ¢.)

The next step in the proof of Theorem 1.5 is to consider the special case
where one of the faces lies in a hyperplane. Before proceeding we introduce
a characterization of rotations of graph domains. A set ) is of the form
{X: X 8> F(X - X-30)} for some unit vector # € R" and Lipschitz
function F': R™ — R if and only if for some o > 0 and all P € 9, Q satisfies

the cone conditions

(X:0<(X=P)-B<(l+a)X-P}CQ
(X:0<(P-X)-B<(l+a)X—P}cC0r

Lemma 1.15. Suppose that Q, N and D are as in (1.1)-(1.4) and that on
the set { X"+ Xy > ¢(X")}, ¢ is the linear function ¢(X') = yX1. Then for
each k € R\ {0}, the problem (M P) has a solution and this solution satisfies

*\2 2 *\ 2 < 2 2 2 r2
/m(vu) R () dP_C(/Ng dP+/D|me| ey dP).

The constant depends on on, dp, ||VO|w, [[V|leo and o This solution is
unique among the class of u with Vu* 4+ u* € L*(99Q).

Proof. Uniqueness follows from the energy estimate in Lemma 1.7. To estab-
lish existence, it suffices to consider the case where the Neumann data, g, is
zero. The sufficiency follows from Theorem A.

To solve (M P) with g = 0, we introduce the reflection in the hyperplane
containing N. Let R(X) = X — 2ex - Xen where ey = (—=dn,0",1)/1/1 4 6%
is the unit normal to the hyperplane containing N. We let Q be the interior of
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the set Q U R(Q2). One can show that Q) satisfies the characterization of graph
domains given before this Lemma with 8 = (1,0”,dx)/4/1 + 6%. Using R, we
extend the Dirichlet data f to a function defined on 9 by letting

) { f(P), PeD

Let @ be the solution to the Dirichlet problem with data f given by Theorem
A. Since fo R = f, it follows that if @ is the solution to the Dirichlet problem
in Q with data f, then @ o R = 4. Furthermore, we have ey - Va = 0 on
N. Hence, if we let u = ulg, then u will solve (M P) with Neumann data
g = 0 and Dirichlet data f € L*'(D). The nontangential maximal function
estimates for u on 99 follow from the corresponding estimates for @ on 9. O

Our next Lemma provides a proof of the existence part of Theorem 1.5.

Lemma 1.16. Let Q. N and D be as in (1.1)-(1.4) and let & € R. Then
Jor each pair (f,q) € L**(D) x L*(N), there exists a solution to (M P) which
satisfies the estimate (1.6).

Proof. As in the previous Lemma, we may assume that ¢ = 0. We consider

the map A: L*(D) — L*'(D) given by
Ah = uh|D

where uy, is the solution to the following Neumann problem provided by The-

orem A.

d,u =0, on N

Au—FKu=0, inQ
d,u = h, on D.

Given Theorem A, solving (M P) is equivalent to showing the map A is bijec-
tive. Of course, the uniqueness of solutions to the Neumann problem implies

that A is injective. In order to show that A is surjective, we let
Bo(X') = max {6 X, (6 + S0)(X") — 6p X}

and set ¢, =t + (1 — t)po. As before, we set N, = 90, N {X : X7 > (X")}
and Dy = 0Q,N{X : X; < (X"} Welet m; : 9Q; — R"! be the projection
(X', 6:(X')) = X'. Observe that the family of Q;, NV; and Dy, 0 <t <1,
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satisfy the conditions (1.1)-(1.4) with constants independent of ¢. In fact, the
dividing surface between D; and N; projects under 7, to the surface { X’ : X; =
(X))} which is independent of t. We let Ay L*(m(Dy)) — L*Y(m(Dy)) be
the operator given by

Ai(h) = [Adfor )] om

where A, is the Neumann to Dirichlet map on 9. The surjectivity of A; and
hence A = A; will follow from the following facts. (See [6, Theorem 5.2]).
1) Ay is surjective. 2) ¢ — A is continuous from [0,1] into bounded

operators from L?*(m(D,)) to L**(m(Dy)). 3) / E*(Ah)? + (VienAth)* dP >
D

t

c| h*dP.
Dy
Fact 1) is a restatement of Lemma 1.15, 2) is contained in Theorem A and

3) is a consequence of Lemma 1.7.
According to 3) above, the norm of A™! is determined by the constant in
Lemma 1.7. This and Theorem A give the nontangential maximal function

estimates of Theorem 1.5. O

Proof of Theorem 1.5. The existence assertion in Theorem 1.5 is in Lemma

1.16. The uniqueness follows from the energy estimate (1.8) in Lemma 1.7. O

62 BOUNDED DOMAINS.

We now turn our attention to proving existence and regularity of solutions
to (M P) in bounded domains. We will use Theorem 1.5 as our main tool. As
mentioned in the Introduction, it is an important technical point that we have
the estimates of Theorem 1.5 for large k. For these values of k., it is simpler to
use a partition of unity to localize the problem since the estimate of [ k%u?
in (1.6) can be used to control errors that arise in the localization procae%s.

We begin by giving a precise description of the boundary value problems
we will study. Let £ be a bounded connected open set and assume that N and
D form a decomposition of 92 with D nonempty. We assume that there is a
finite collection of points {F; : ¢+ =1,..., M} and r > 0 so that Q2 C Lj\ﬁBr(Pi)

=1
and that for each 7, there is a domain 2;, with boundary decomposition N;, D;,
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which are orthogonal motions of graph domains satisfying (1.1)-(1.4) and so

that
an BQT(Pz) == Qz N BZT(Pi)v

DN By (P) = D; N By (P),
N N By (FP;) = N; N By, (P).
Our main result is:

Theorem 2.1. Let Q. N and D be as described above. Then the problem
(MP) (with k =0) has a solution which satisfies

[ vwpap < ([ g apt [ NP ar).

The constant C' is determined by geometric properties of the domain. (See the
remarks following (2.12).) This solution is unique among the class of harmonic
Junctions with Vu* € L*(99).

Our first Lemma will be used in conjunction with the Fredholm theory
to reduce the solution of (M P) with k = 0 to the solution of (M P) with k
large. This lemma requires only that {2 be a bounded Lipschitz domain. This
means that there is a finite collection of orthogonal motions of graph domains
{;: i=1,...,m} and points P; € 99 so that

QN By (P) = QN By (P)

Lemma 2.2. Let Q be a bounded Lipschitz domain for k € R, consider the
map Sy : L*1(0Q) — L*(0Q) given by Spf = d,u where u is the solution of

Au— k*u =0, in ()
u=f, on 0f).

For each pair of real numbers, ky and ky, the map Sy, — Sk, is compact.

Proof. Let f € L*'(9Q) and let u; be the solution of (A — k?)u; = 0 with
Dirichlet data f. According to Theorem A (extended to bounded domains),
we have Vur € L*(99Q). If we let w = uy — uy, then the Rellich identity gives
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the estimate
[ Jowfar <c [/ Vool Ky — K2us| + [Vw2dX |, (2.3)
219 Q

(See [2, 9]).

The nontangential maximal function estimates for Vw imply that

[ IVl dX < eCop, [ [VF1+ 2P
Qe o0

where . = {X € Q : dist(X,09) < €}. This and easy interior compactness
properties of solutions of (A — k?)u; = 0 imply that the map f — Vw = Af
is a compact map from L*'(9Q) — L*(Q2). Hence, we may rewrite (2.3) as

186 f = St fllz200) < Crko (AL 2@ 1 f 2 0) + 1AF17250))-

This and the compactness of A imply the Lemma. O
We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. We let &, ¢ = 1,..., M be a smooth partition of
unity on 9 which is subordinate to the cover B.(F;). For i = 1,... M we
let v; be the solution to (M P) in ©; with data & f on D; and &g on N;. For

each ¢, we let n; be a smooth cutoff function which is one on B,.(F;) and is
M

supported in Ba.(F;). We let uy = vai and observe that u; — f =0 on D

=1
M
and on N, d,u; —¢g = Zvi&,m. Hence,
=1
/N|&,u1 —gl*dP < C;/vaf dP
(2.4)

C
S

/NgZdP+/D(1+k2)f2+|vtanf|2dp .

Where we have used the estimate of Theorem 1.5 to bound the L?(N;)-norm of
v; by the data of v; on 9€2;. Thus for large k, the data of u; closely approximates
the desired data f and g. Unfortunately,

Auy — Ky = Z(viAm +2Vn, - Vo) = F #0.

K3

12



We let F;. be the fundamental solution for A — k? and let uy = Ep * F'. We

claim that

/ E*ui + |[Vuy|* < k%
a0

/92 dP
N

+/ IV o f |2+ K22 dP] k> L
D

(2.5)

To establish the claim (2.5), we begin by observing that
B[ 020 +FuPap < [ [ B g+ 1VafiPar+ [ giar|. 20)
Q; D; N;

which follows from the energy inequality (1.8), Young’s inequality (2ab <
a’ + bz) and the estimate of Lemma 1.7. Next observe that for multiindices
a, with |a| < 2, the map b — 9% Fy + h is bounded on L*(R™) with norm
C| k|2~ 1ol

197 B Al 22y < CE7|[2 ) 22 o

Hence, we have the estimate

/R 2 4 k2 Vs 4 [V2us]? dX

(2.7)
< CZ/ 02 + [V, 2.
Next, observe that if o : @ — R” is C'', then
/ uza v dP = / 20 - Vuguy + uj diva dX. (2.8)
a9 Q

On a Lipschitz domain, we may choose « so that a-v > § > 0 a.e. on 0f).

Thus using Young’s inequality and (2.7) followed by (2.6) we obtain

/ KudP < C|k|/|vu2|2+k2u§ dX
219 Q
M
C
< m.;/mszr V|2 dX

M
<& (/ g dP+/ \Vianfil* + K2 f? dP).
=1 N; D;

A similar argument gives the same bound for / |Vug|* dP. This establishes
o9
the claim (2.5).
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Now let u = uy — uy. We have (A — k*)u = 0 and the estimates (2.4) and
(2.5) imply that

/N(ayu _ g2 dP + /D|vmu P4k (u— [)2dP
(2.9)

C
<@

/N92 dP+/Dk2f+|vm(u—f)|2dP k> 1.

Finally, we claim that (Vu)* and w* are in L*(9Q). This is true for u; by
Theorem 1.5. For uy, we have VZuy € L*(2) and this implies that Vuj and
uj are in L*(99Q). (See [2, Lemma 1.2]). The estimate (2.9) implies that the
map (f,g) = (u|p,d,u|y) is invertible on the space L*'(D) x L*(N), when k
is large. Thus we may solve (M P) in bounded domains for k sufficiently large.
To remove the restriction that & is large, we consider the map Ay : L*'(N) —
L*(N) given by A f = d,u|y where u is the solution to the Dirichlet problem
{ (A—=KHu =0, inQ
u=f, on N
u =0, on D.
We write Ag = Ap+ Ao — Ay, for some k large and will show that Ag is invertible.
Note first that the uniqueness of solutions to (M P) implies that Ag is injective.
Next, observe that the solvability of (M P) for large k which has established
in the previous paragraph implies that the map Ay is invertible and thus of
index zero. Lemma 2.2 asserts that Ay — Ag is compact and hence Ag is also
of index zero. Thus Ag is invertible and we may solve (M P) when k = 0. Of
course, this argument will also work for other values of k besides 0.
This soft argument does not give good estimates for the nontangential

maximal function of the solution. We will show that such estimates do in fact

hold. For k =0, we have

/QQ(Vu*)QdP <C [/D P2+ [V f2dP + /N92 dP]

where the constant depends on explicit geometric quantities. To see this,
observe that we can construct a smooth vector field 3 : © — R™ which

satisfies
B3(Q)-v(Q) >8>0 on D

and

BQ) - v(Q) < —§<0 on N.
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This is done by choosing the constant vector used in (1.10) for each graph
domain €); and then patching together with a partition of unity. Using the
vector field 3 in the Rellich identity and (2.8) in place of (1.9) we can mimic
the proof of Lemma 1.7 in ©, and show that if Au =0, (Vu)* € L*(99), then

[ vupar <c [/ Ve dP + [ 0,02 P+ | |vu|2dx]. (2.10)
1) D N Q
The energy estimate (1.8) gives

2/ |IVu|*dX = 2/ ud,udP < / %uz + e(d,u)* dP
Q Q D
(2.11)
—I—/ %(&,u)z + eu? dP
N

Since
[wrap<c (/ utdp+ [ |Vu|2dX) (2.12)
N D Q

when € is connected, we may conclude from (2.10), (2.11) and (2.12) that
/ Vul* < C [/ u? 4 |Vignu|* dP —I—/ d,u* dP] )
o9 D N

The constant in this estimate depends only on the vector fields o and 3 and the
constant in the Poincaré inequality (2.12). Finally, the estimates of Dahlberg
[9] give that

/m(vu*)2 dp < (J/89 Vul? dP

where the constant depends only on the Lipschitz character of 2. O

The result of Theorem 2.1 may be viewed as a regularity result for the
weak solution of (MP) constructed using energy estimates: If the boundary
data (f,g) lie in L*'(D) x L*(N), then the solution wu lies not only in the
energy space, L*'(Q), but also Vu € L*'(9Q). We give a simple example

which shows that this regularity may fail in some Lipschitz domains.

Examples. Let 0 < a < 27 and consider the sector S, = {z: 0 < argz < a}.
The function r?™/*sin (76/2a) is harmonic in this sector, satisfies d,u = 0 on
{re®: r>0yandu=0o0n{z: Imz =20, Rez > 0}. If welet Q, =
S,n{lz] <1}, Ny ={re*: 0<r <1} and D, = 0Q,\ N,, then Q,, N,, D,
satisfy the hypotheses of Theorem 2.1, except near z = 0 when 27 > a > 7.
If we let u, = r™/?*sin (07 /2a) on Q,, then d,u, € L*(N,), u, € L*(D,)
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but if @ > 7, then Vu, € L*(9Q,). Yet we still have Vu, € L*(Q,) for all
a, hence u, is the unique solution of (MP) in L?!(£,). Thus the conclusion
of Theorem 2.1 fails in the family of domains 2, precisely when €1, violates
(1.2).

Another remark indicating the correctness of the class of domains consid-
ered in Theorem 2.1 is an elementary observation of C. Kenig. Suppose that
Theorem 2.1 holds for (M P) on a given  with NV and D a decomposition of
0. If w is the solution of (M P), with data f on D and data 0 on N, then
the map f — u|sq provides an extension operator from L*'(D) into L*!(9Q).
It is well-known that the existence of an extension operator requires some
conditions on D). One well-known sufficient condition for the existence of an
extension operator for domains in R” is that the domain be Lipschitz.

We also mention several questions raised by Theorem 2.1. 1) Is it possible
to obtain similar results when f € LP'(D) and g € LP(N)? The examples
given above indicate that for p < 2, one should be able to obtain regular-
ity results in domains with nonconvex or “re-entrant corners”. 2) Can one
study (M P) in domains where the decomposition of 9 into D and N is more
complicated? For example, what can be said about (M P) in the pyramid
| X1| + | X2| < X3 if we specify Dirichlet and Neumann data on alternate faces.
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