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Abstract

We prove the well-posedness of the mixed problem for the Stokes system in a class of Lipschitz
domains in R

n, n ≥ 3. The strategy is to reduce the original problem to a boundary integral
equation, and we establish certain new Rellich-type estimates which imply that the intervening
boundary integral operator is semi-Fredholm. We then prove that its index is zero by performing
a homotopic deformation of it onto an operator related to the Lamé system, which has recently
been shown to be invertible.

1 Introduction

Given an open set Ω ⊂ R
n with outward unit normal ~ν, along with a partition D, N of ∂Ω, consider

the mixed boundary value problem for the Stokes system































∆~u−∇π = 0 and div ~u = 0 in Ω,

~u
∣

∣

∣

D
= ~fD ∈ L2

1(D),
[

[∇~u+ (∇~u)⊤]~ν − π~ν
]∣

∣

∣

N
= ~fN ∈ L2(N),

M(∇~u), M(~u), M(π) ∈ L2(∂Ω),

(1.1)

where ~fD, ~fN are two given functions. Hereafter, M denotes the nontangential maximal operator,
and boundary traces are taken in the sense of pointwise nontan-tangential limits. Finally, L2(N)
is the Lebesgue space of square-integrable functions (with respect to the surface measure) on N ,
whereas L2

1(D) stands for the Sobolev space of order one in D. See §2 for more details.
The vector field ~u = (u1, ..., un) and the scalar-valued function π represent, respectively, the

velocity and the pressure of the fluid. In (1.1), ∇~u := (∂uj/∂xk)1≤j,k≤n is the Jacobian matrix of
~u, and the superscript ⊤ indicates transposition. Such problems arise when modeling the behavior
of an incompressible medium in a rigid open container (such is the case with the water flowing in a
river, when D is the surface of the river bed and N is the free surface of the water). See, e.g., [11],
[13] and the references therein.

Let us now describe the class of domains in which we shall study (1.1). To begin with we shall
assume that Ω ⊆ R

n, n ≥ 3, is a bounded Lipschitz domain with connected boundary. Being a
Lipschitz domain in R

n, amounts to having a boundary which locally coincides (up to a rigid motion
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of the space) with the graph of a real-valued Lipschitz function defined in R
n−1; cf. Definition 2.1.

In addition, the boundary ∂Ω is partitioned into two pieces N , D which are assumed to meet
at an angle < π, roughly speaking. Such domains will be referred to as being creased Lipschitz
domains; cf. Definition 2.2. They have been first considered in [3] where it was shown that the
mixed problem with L2-data for Laplace’s equation is well-posed in such domains. In particular,
this offered a partial solution to a question posed by C.Kenig’s on p. 120 of [12].

The case of the the mixed problem for the Lamé differential operator,































µ∆~u+ (µ+ λ)∇(div ~u) = 0 in Ω,

~u
∣

∣

∣

D
= ~fD ∈ L2

1(D),
[

µ[∇~u+ (∇~u)⊤]~ν + λ (div ~u)~ν
]
∣

∣

∣

N
= ~fN ∈ L2(N),

M(∇~u), M(~u) ∈ L2(∂Ω),

(1.2)

with

µ > 0 and λ ≥ −
2µ

n
, (1.3)

has been recently treated in [4] once again, when D, N form a creased partition of the boundary
of the Lipschitz domain Ω ⊂ R

n, n ≥ 3.
The well-posedness result pertaining to (1.2) is relevant to the present work since our strategy

for dealing with (1.1) can be summarized as follows. First, we show that the mixed problem for
the Stokes system can be reduced to the issue of inverting a certain boundary integral operator T .
Second, we develop a new set of Rellich-type estimates which, in turn, allow us to show that T is
an injective, semi-Fredholm operator. Thus, matters are reduced to proving that T has index zero.
Parallel considerations work in the case of (1.2) when, once again, the well-posedness of the problem
in question is equivalent to inverting a certain boundary singular integral operator, called Tµ,λ. The
main result in [4] implies that Tµ,λ is invertible whenever (1.3) holds. The somewhat unexpected
link between (1.2) and (1.1), seen at the level of these boundary singular integral operators, is that

lim
λ→∞

T1,λ = T, (1.4)

in the strong, operator norm. Consequently, the a priori knowledge that T is semi-Fredholm allows
us to deduce that index (T ) = index (T1,λ) = 0, and the desired conclusion about (1.1) follows.

This is interesting inasmuch the limiting case of the Lamé system µ∆+(µ+λ)∇ div as λ→ ∞ is
not the Stokes system. Let us also point out that, in hindsight, it is natural that in the chronology
of mixed problems in Lipschitz domains, the Stokes system has been treated after the Lamé system
and Laplacian, since the respective solutions make use of earlier work in precisely this order. As
expected, the Stokes system is also somewhat special due to the relatively unorthodox role played
by the pressure function.

Our main result regarding (1.1), reads as follows.

Theorem 1.1 Let Ω be a bounded, creased, Lipschitz domain in R
n, n ≥ 3, with connected bound-

ary. Then there exists ε > 0 such that the mixed boundary value problem (1.1) has a unique solution
~u for any given ~fD ∈ L2

1(D), ~fN ∈ L2(N). In addition, this solution satisfies
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‖M(∇~u)‖L2(∂Ω) + ‖M(~u)‖L2(∂Ω) + ‖M(π)‖L2(∂Ω) ≤ C‖~fD‖L2

1
(D) + C‖~fN‖L2(N), (1.5)

(where C depends only on Ω, D and N) and can be represented in terms of layer potentials associated
with the Stokes system.

This can be regarded as an extension of the main results pertaining to the Stokes system in [7], [9],
where the limiting cases when either D or N is empty have been treated.

In fact, our methods can handle various other versions and generalizations of this result. For
example, Theorem 5.4 treats the case of a graph Lipschitz domain (while retaining the assumption
that D, N form a creased partition of ∂Ω). Also, in Theorem 6.3, we prove a well-posedness result
for the mixed problem for the Stokes system in bounded, creased Lipschitz domains in R

n, in the
case when the boundary condition involving the traction is replaced by

[

[r(∇~u) + (∇~u)⊤]~ν − π~ν
]
∣

∣

∣

N
= ~fN ∈ Lp(N), (1.6)

where r ∈ (−1, 1] is a parameter. Of course, r = 1 corresponds to (1.1), which is the most physically
relevant case. However, not only does this formalism allow for the simultaneous consideration (and
economical treatment) of a wide spectrum of conormal derivatives for the Stokes system (e.g., the
case r = 0 corresponds to the conormal derivative used in [9]), but the consideration of (1.6) turns
out to be (as is apparent from the considerations in §4) very useful even if one is only interested in
(1.1) alone.

Our approach, based on boundary layer potentials and Calderón-Zygmund theory, along with
well-understood perturbation techniques, allows in fact to show that the Lp-version of (1.1) remains
well-posed whenever |p−2| < ε, for some small ε = ε(Ω,D,N) > 0. While determining the optimal
Lp-solvability range for the mixed problem (1.1) remains open at the moment, we wish to point out
that recent progress in the case when N = ∅ (corresponding to the so-called regularity problem)
and D = ∅ (corresponding to the Neumann problem) for the Stokes system in an arbitrary Lipschitz
domain Ω ⊂ R

n, n ≥ 2, has been made in [21].
For more on the topic of mixed boundary problems in Lipschitz domains the interested reader

is referred to [3], [14], [16], [18], [20], and the references cited there. Let us also mention here [15]
where value problems for the Navier-Stokes system in polyhedral domains with a variety of mixed
boundary conditions are studied and where references to earlier work on this topic can be found.

The layout of the current paper is as follows. In Section 2 we collect a number of rudiments
regarding the geometry of creased Lipschitz domains, function spaces, the algebraic structure of the
Stokes system, and set up the associated layer potentials. In Section 3, we take the first step in the
treatment of the mixed problem for creased graph Lipschitz domains, by reducing this problem to
a boundary integral equation. Section 4 is largely devoted to developing a new set of Rellich-type
estimates which are key to our subsequent analysis (see also the comments made at the beginning of
§4). This is the main technical innovation of this paper. Armed with the aforementioned estimates,
we finish in Section 5 the proof of the well-posedness of the mixed problem in the graph case. The
main novelty here, is the use of a homotopy linking the layer potentials associated, on the one
hand, with Stokes system, with those associated, on the other hand, with the Lamé system. For
this segment in our analysis, the results in [4] play a basic role. Finally, in Section 6, we indicate
how this technology can be adapted to the case of bounded creased Lipschitz domains.
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2 Preliminaries

We start by reviewing certain geometrical concepts.

Definition 2.1 Call an open set Ω ⊂ R
n a Lipschitz domain, provided there exists a finite M > 0

for which the following is true. For every x ∈ ∂Ω there exists a coordinate system in R
n (obtained

from the standard one via a rigid motion) say, (x′, xn) = (x1, x
′′, xn) ∈ R × R

n−2 × R, a cylinder
Cr(x) := {(y′, yn) : |y′ − x′| < r, |yn − xn| < 2Mr} for some r > 0, and a Lipschitz function
φ : R

n−1 → R with ‖∇φ‖L∞(Rn−1) ≤M , such that

Cr(x) ∩ Ω = {(y′, yn) : yn > φ(y′)} ∩Cr(x),

Cr(x) ∩ ∂Ω = {(y′, yn) : yn = φ(y′)} ∩ Cr(x).
(2.1)

If ∂Ω can be described using just one coordinate cylinder, we shall refer to Ω as a graph Lipschitz
domain. As is well known, any Lipschitz domain Ω ⊂ R

n has a well defined surface measure σ and
outward unit normal ~ν(x) at σ-a.e. x ∈ ∂Ω.

Definition 2.2 Let Ω be a bounded Lipschitz domain in R
n with connected boundary ∂Ω. Assume

that ∂Ω = D̄ ∪ N̄ , where D,N ⊆ ∂Ω are nonempty open sets with D ∩ N = ∅. In addition, it is
assumed that there exists a finite constant m > 0 with the property that for each x ∈ D̄ ∩ N̄ there
exists a Lipschitz function ψ : R

n−2 → R and some r > 0 satisfying (with Cr(x) and φ as in (2.1)):

(i) N ∩ Cr(x) = Cr(x) ∩ ∂Ω ∩ {(x1, x
′′, xn) : x1 ≥ ψ(x′′)};

(ii) D ∩ Cr(x) = Cr(x) ∩ ∂Ω ∩ {(x1, x
′′, xn) : x1 < ψ(x′′)};

(iii) ∂φ
∂x1

> m a.e. for x1 > ψ(x′′) and ∂φ
∂x1

< −m a.e. for x1 < ψ(x′′).

The reason for the terminology employed here is that it is reasonable to think of the interface D̄∩N̄
as a ‘crease’ for Ω. Heuristically, this is a quantified way of expressing the fact that D and N meet
at an angle < π. As simple counterexamples indicate (cf., e.g., the discussion on p. 1231 in [3]),
such a property is quite natural, in fact necessary, in the context of mixed boundary problems.

A distinguished feature of a creased Lipschitz domain (bounded or graph) is the existence of a
vector field ~h ∈ C∞

0 (Rn) which satisfies

〈~h, ~ν〉 > δ a.e. on N and 〈~h, ~ν〉 < −δ a.e. on D. (2.2)

See [3], [4], for a discussion.
Assume next that a Lipschitz domain Ω ⊂ R

n with outward unit normal ~ν = (νj)1≤j≤n and
surface measure σ has been fixed. Given a scalar-valued function u, we define the tangential gradient
of u on ∂Ω by setting
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∇tanu :=
(

νk∂τkj
u
)

1≤j≤n
, (2.3)

where

∂τjk
u := νk(∂ju)

∣

∣

∣

∂Ω
−νj(∂ku)

∣

∣

∣

∂Ω
, j, k = 1, . . . , n. (2.4)

In particular, ∂τjk
u = νj(∇tanu)k − νk(∇tanu)j for j, k = 1, ..., n, so that |∇tanu| ≈

∑n
j,k=1 |∂τjk

u|.
Finally, agree that ∇tan acts on vector fields component-wise.

Fix p ∈ (1,∞) arbitrary, and Ω ⊂ R
n Lipschitz. We then define Lp-based Sobolev-like spaces

on an open subset E of ∂Ω by setting

Lp(E) := {f : E → R : f is measurable and ‖f‖Lp(E) :=
(∫

E |f |p dσ
)1/p

< +∞},

Lp
1(E) := {f ∈ Lp(E) : ∇tanf ∈ Lp(E)}, L̇p

1(E) := {f ∈ L1
loc(E) : ∇tanf ∈ Lp(E)},

(2.5)

where L1
loc(E) stands for the Lebesgue space of locally integrable functions on E, and equip the

last two spaces with the norms

‖f‖Lp
1
(E) := ‖f‖Lp(E) + ‖∇tanf‖Lp(E) and ‖f‖L̇p

1
(E) := ‖∇tanf‖Lp(E). (2.6)

We shall, in fact, employ the same notation for the versions of these spaces corresponding to
vector-valued functions. We will, nonetheless, use an arrow to indicate that a particular function
is vector-valued.

Next, given w : Ω → R, the non-tangential maximal function of w evaluated at x ∈ ∂Ω, is
defined as

M(w)(x) := sup{|w(y)| : y ∈ Γ(x)}, (2.7)

where Γ(x) stands for the non-tangential approach region with vertex at x ∈ ∂Ω given by

Γ(x) := {y ∈ Ω : |x− y| < 2 dist (y, ∂Ω)}. (2.8)

Also, for any open subset E of ∂Ω, the trace w|E is understood in the non-tangential sense, i.e.,

w
∣

∣

∣

E
(x) := lim

y→x

y∈Γ(x)

w(y), for a.e. x ∈ E. (2.9)

Of course, the above considerations have natural counterparts to vector-valued functions.
We now turn our attention to the algebraic formalism associated with the Stokes system. Con-

sider the following family of coefficients (with δjk denoting the Kronecker symbol)

aαβ
jk (r) := δjkδαβ + r δjβδkα, 1 ≤ j, k, α, β ≤ n, (2.10)
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indexed by the parameter r ∈ R and, adopting the summation convention over repeated indices,
introduce the differential operator Lr acting on ~u = (uβ)1≤β≤n by

(Lr~u)α := ∂j(a
αβ
jk (r)∂kuβ) = ∆uα + r ∂α(div ~u), 1 ≤ α ≤ n. (2.11)

Then, for each r ∈ R, the Stokes system in a domain Ω ⊂ R
n can be written as

Lr~u = ∇π, div ~u = 0 in Ω, (2.12)

where π is a scalar-valued function in Ω.
Let ~ν = (ν1, ..., νn) denote the outward unit normal to ∂Ω. Corresponding each writing of the

Stokes system (2.12) with Lr as in (2.11), we shall associate the following co-normal derivative

∂r
ν(~u, π) :=

(

νja
αβ
jk (r)∂kuβ − ναπ

)

1≤α≤n

=
[

(∇~u)⊤ + r(∇~u)
]

~ν − π~ν on ∂Ω, (2.13)

where ∇~u is the Jacobian matrix of ~u and ⊤ indicates transposition. Then, introducing the bilinear
form

Ar(ξ, ζ) := aαβ
jk (r)ξα

j ζ
β
k , ∀ ξ, ζ n× n matrices, (2.14)

we have the following useful integration by parts formulas (where 〈·, ·〉 stands for the standard inner
product in R

n):

∫

Ω
〈Lr~u−∇π, ~w〉 dx =

∫

∂Ω
〈∂r

ν(~u, π), ~w〉 dσ −

∫

Ω
[Ar(∇~u,∇~w) − π(div ~w)] dx, (2.15)

and

∫

Ω

〈Lr~u−∇π, ~w〉 dx−

∫

Ω

〈Lr ~w −∇ρ, ~u〉 dx (2.16)

=

∫

∂Ω

〈∂r
ν(~u, π), ~w〉 dσ −

∫

∂Ω

〈∂r
ν(~w, ρ), ~u〉 dσ +

∫

Ω

π(div ~w) dx−

∫

Ω

ρ(div ~u) dx.

For future refence, let us also record here that

Ar(ζ, ζ) ≥ Cr

{

|ζ + ζ⊤|2 if r ∈ (−1, 1],

|ζ|2 if |r| < 1,
(2.17)

uniformly in the n× n matrix ζ.
We continue by reviewing background material about the layer potentials associated with the

Stokes system in a Lipschitz domain Ω ⊂ R
n. Let ωn−1 denote the surface measure of Sn−1, the
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unit sphere in R
n, and let E(x) = (Ejk(x))1≤j,k≤n be the Kelvin matrix of fundamental solutions

for the Stokes system, where

Ejk(x) := −
1

2ωn−1

(

1

n− 2

δjk
|x|n−2

+
xjxk

|x|n

)

, x ∈ R
n \ {0}, n ≥ 3. (2.18)

A direct calculation shows that, for x ∈ R
n \ {0},

∂kEjk(x) = 0 for 1 ≤ j ≤ n, (2.19)

where, as before, summation is performed over repeated indices.
Let us also introduce a pressure vector ~q(x) given by

~q(x) = (qj(x))1≤j≤n := −
1

ωn−1

x

|x|n
, x ∈ R

n \ {0}. (2.20)

Now, define the single layer potential operators S and S by setting, respectively,

S ~f(x) :=

∫

∂Ω

E(x− y) ~f(y) dσ(y), x ∈ Ω, (2.21)

S ~f(x) :=

∫

∂Ω

E(x− y)~f(y) dσ(y), x ∈ ∂Ω. (2.22)

In particular,

S ~f
∣

∣

∣

∂Ω
= S ~f on ∂Ω. (2.23)

For future purposes we note here that, as a consequence of (2.19) and the Divergence Theorem,

S(~ν) = 0 in Ω =⇒ S(~ν) = 0 on ∂Ω. (2.24)

Let us also define a corresponding potential for the pressure by

Q~f(x) :=

∫

∂Ω

〈~q(x− y), ~f(y)〉 dσ(y), x ∈ Ω, (2.25)

so that

Q(~ν)(x) =
1

ωn−1

∫

∂Ω

〈~ν(y), y − x〉

|x− y|n
dσ(y) = 1 for x ∈ Ω. (2.26)

Furthermore,
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∆S ~f −∇Q~f = 0 and div S ~f = 0 in Ω. (2.27)

These layer potentials also satisfy the following trace formulas

∂jS ~f
∣

∣

∣

∂Ω
(x) = −1

2νj(x)~ftan(x) + p.v.

∫

∂Ω
(∂jE)(x − y)~f(y) dσ(y), (2.28)

Q~f
∣

∣

∣

∂Ω
(x) = 1

2〈ν(x),
~f (x)〉 + p.v.

∫

∂Ω
〈~q(x− y), ~f(y)〉 dσ(y) =: Q~f(x), (2.29)

at a.e. x ∈ ∂Ω, where the subscript tan indicates the tangential component. It follows from (2.28)
and (2.29) that

∂r
ν(S ~f,Q~f)

∣

∣

∣

∂Ω
(x) =

(

−1
2I +Kr

)

~f(x), a.e. x ∈ ∂Ω, (2.30)

where, with p.v. denoting principal value (in the usual sense, of excluding small, concentric balls
shrinking to the singularity),

Kr
~f(x) = p.v.

∫

∂Ω

(1 − r)
〈ν(x), x− y〉~f(y) + ν(x)〈x− y, ~f(y)〉 − (x− y)〈ν(x), ~f (y)〉

2ωn−1|x− y|n
dσy

+ p.v.

∫

∂Ω

(1 + r)
(n(x− y)〈ν(x), x− y〉〈x− y, ~f(y)〉

2ωn−1|x− y|n+2
dσy, x ∈ ∂Ω. (2.31)

We conclude this section by pointing out that, thanks to the results in [5] and the techniques
in [8], we have

‖M(∇S ~f)‖L2(∂Ω) + ‖M(Q~f )‖L2(∂Ω) ≤ C‖~f‖L2(∂Ω) (2.32)

and the operators

∇tanS : L2(∂Ω) −→ L2(∂Ω), Kr : L2(∂Ω) −→ L2(∂Ω), (2.33)

are well-defined and bounded. For a more detailed discussion on these topics see, e.g., [9], [21].

3 Reduction of the mixed problem to a boundary equation

Let Ω ⊆ R
n, n ≥ 3, be a graph Lipschitz creased domain. With r ∈ (−1, 1] fixed, consider the

following boundary value problem.



















∆~u = ∇π and div ~u = 0 in Ω,

~u
∣

∣

∣

D
= ~fD ∈ L̇2

1(D) and ∂r
ν(~u, π)

∣

∣

∣

N
= ~fN ∈ L2(N),

M(∇~u), M(π) ∈ L2(∂Ω).

(3.1)
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For r ∈ (−1, 1], define the operator

Tr : L2(∂Ω) −→ L̇2
1(D) ⊕ L2(N), Tr

~f :=
(

(S ~f)
∣

∣

∣

D
, ((−1

2I +Kr)~f)
∣

∣

∣

N

)

. (3.2)

We now recall two results proved in [21], where some of the work in [7] and [9] has been refined.

Lemma 3.1 Let Ω ⊆ R
n, n ≥ 3, be a graph Lipschitz domain. Then the operator

S : L2(∂Ω) −→ L̇2
1(∂Ω), (3.3)

is an isomorphism.

Lemma 3.2 Let Ω ⊆ R
n, n ≥ 3, be a graph Lipschitz domain. If ~u and π satisfy

∆~u = ∇π and div ~u = 0 in Ω, M(∇~u),M(π) ∈ L2(∂Ω), (3.4)

then there exists ~f ∈ L2(∂Ω) and ~c ∈ R
n such that ~u = S ~f + ~c in Ω and π = Q~f in Ω.

With these results in mind, we can prove the following theorem.

Theorem 3.3 Let Ω be a graph Lipschitz creased domain. Then for r ∈ (−1, 1] fixed, the following
are equivalent:

(1) the mixed boundary value problem (3.1) is well-posed;

(2) the operator Tr defined in (3.2) is an isomorphism.

Proof. Fix r ∈ (−1, 1]. Assume (3.1) is well-posed, and let ~fD ∈ L̇2
1(D) and ~fN ∈ L2(N). Then

there exist ~u and π that satisfy (3.1). From Lemma 3.2, there exist ~f ∈ L2(∂Ω) and ~c ∈ R
n such

that ~u = S ~f + ~c and π = Q~f . Then it follows that Tr
~f = (~u|D, ∂

r
ν(~u, π)|N ) = (~fD, ~fN ), and so Tr

is surjective. To check its injectivity, suppose that ~f ∈ L2(∂Ω) satisfies Tr
~f = 0. Then ~u = S ~f and

π = Q~f solve the homogeneous version of (3.1). See (2.27) and (2.32). Hence, from uniqueness, ~u
must be constant in Ω. Consequently, S ~f = ~u|∂Ω = 0 in L̇2

1(∂Ω), which forces ~f = 0 by Lemma 3.1.
This shows that Tr is injective. Thus Tr is an isomorphism, as desired.

Next, assume that Tr is an isomorphism. Since Tr is surjective, for any ~fD ∈ L̇2
1(D) and

~fN ∈ L2(N), there exists ~f ∈ L2(∂Ω) such that Tr
~f = (~fD, ~fN ). Then ~u := S ~f and π := Q~f in Ω

solve (3.1) and, since Tr is an isomorphism, they also satisfy the estimate

‖M(∇~u)‖L2(∂Ω) + ‖M(π)‖L2(∂Ω) ≤ C‖~f‖L2(∂Ω) ≤ C‖Tr
~f‖L̇2

1
(D)⊕L2(N)

= C‖~fD‖L̇2

1
(D) + C‖~fN‖L2(N). (3.5)

To prove uniqueness, assume ~u and π solve the homogeneous version of (3.1). Then by
Lemma 3.2, ~u = S ~f +~c and π = Q~f for some ~f ∈ L2(∂Ω) and ~c ∈ R

n. It follows that Tr
~f = 0, and

since Tr is injective, ~f = 0. Then ~u = ~c and π = 0 as desired. �
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4 Rellich estimates

The main result in this section is the theorem below, which contains the key technical estimate of
the paper. In the case when either D, or N , is empty, our Rellich-type estimate below reduces to
those proved in [7] and [9]. For example, if D = ∅, our Rellich estimate (on graphs) implies

∫

∂Ω

[|∇~u|2 + π2] dσ ≤ C

∫

∂Ω

|[∇~u+ (∇~u)⊤]~ν − π~ν|2 dσ (4.1)

which has been proved in [7] using a so-called boundary Korn estimate. However, it should be
noted that the more general case (D 6= ∅) treated here is more delicate, in that one cannot use the
boundary Korn inequality from [7] directly in the present setting. The reason is that one needs
to work with algebraic identities, instead of estimates, in order to facilitate further cancellations.
Hence, the challenge is to find such suitable Rellich-type identities which, in some sense, have a
built-in boundary Korn estimate.

Theorem 4.1 Let Ω be a Lipschitz creased domain in R
n, n ≥ 2. Let ∂Ω = N ∪D with N∩D = ∅.

For r ∈ (−1, 1] fixed, there exists C > 0 such that if ~u and π satisfy

Lr~u = ∇π and div ~u = 0 in Ω, M(∇~u), M(π) ∈ L2(∂Ω), (4.2)

then

∫

∂Ω

[|∇~u|2 + π2] dσ ≤ C

∫

N

|∂r
ν(~u, π)|2 dσ + C

∫

D

|∇tan~u|
2 dσ + C

∫

Ω

[|∇~u|2 + π2] dx. (4.3)

Proof. First, for any ~u and π as in (4.2) and any ~h ∈ C∞(Rn) the Gauss divergence theorem leads
to the following Rellich-type identities:

∫

∂Ω

Ar(∇~u,∇~u)〈~h, ~ν〉dσ = 2

∫

∂Ω

〈∂r
ν(~u, π),∇h~u〉 dσ +

∫

Ω

(div~h)Ar(∇~u,∇~u) dx

+ 2

∫

Ω

[

π(∂iuk)(∂khi) − (∂iuk)(∂juk + r∂kuj)(∂jhi)
]

dx

= 2

∫

∂Ω

〈∂r
ν(~u, π),∇h~u〉 dσ +

∫

Ω

Oh dx, (4.4)

and

∫

∂Ω

π2〈~h, ~ν〉 dσ = −2

∫

∂Ω

〈∂−1
ν (~u, π), (∇~u)~h〉 dσ +

∫

Ω

(div~h)(π)2 dx

10



+ 2

∫

Ω

[

(∂kui)(∂jhi)(∂juk − ∂kuj) − (∂jhi)(∂jui)π
]

dx

= −2

∫

∂Ω

〈∂−1
ν (~u, π), (∇~u)~h〉 dσ +

∫

Ω

Oh dx. (4.5)

Here and elsewhere, ~h = (hk)1≤k≤n, ~u = (uj)1≤j≤n, and we have used the notation ∇h~u :=
(hk∂kuj)1≤j≤n. From here on, let us also use Oh to denote any function in Ω such that

Oh ≤ C(|∇~u|2 + π2)|∇~h|. (4.6)

for some finite, purely dimensional constant C > 0. If we choose ~h such that 〈~h, ~ν〉 > δ almost
everywhere on ∂Ω (which is possible, given that ∂Ω is Lipschitz), then using Cauchy’s inequality
in (4.5) allows us to conclude that

∫

∂Ω

π2 dσ ≤ C

∫

∂Ω

|∇~u|2 dσ + C

∫

Ω

[|∇~u|2 + π2] dx. (4.7)

Next, define the matrix valued function

∇h
τ~u :=

(

hi∂τji
uk

)

j,k
. (4.8)

Then the following identity holds

〈∂r
ν(~u, π),∇h~u〉 −Ar(∇~u,∇~u)〈~h, ~ν〉 = Ar(∇~u,∇

h
τ~u) − π〈(∇~u)~ν, h〉. (4.9)

Notice that since div ~u = 0 in Ω, we have

(∇~u)~ν = (νk∂juk)j = (∂τkj
uk)j, (4.10)

and so both terms in the right-hand side of (4.9) include tangential derivatives. Now, subtracting
the term 2

∫

D Ar(∇~u,∇~u)〈~h, ~ν〉 dσ from both sides of (4.4) and using (4.9) gives

∫

N

Ar(∇~u,∇~u)〈~h, ~ν〉 dσ −

∫

D

Ar(∇~u,∇~u)〈~h, ~ν〉 dσ (4.11)

=

∫

N

〈∂r
ν(~u, π),∇h~u〉 dσ +

∫

D

[Ar(∇~u,∇
h
τ~u) − π〈(∇~u)~ν, h〉] dσ +

∫

Ω

Oh dx.

At this stage, we bring in the condition that Ω is a creased domain, so we can choose a vector
field ~h ∈ C∞

0 (Rn) with the property that (2.2) holds for some δ > 0. Using (2.2) in (4.11) and
Cauchy’s inequality with epsilon (i.e., ab ≤ εa2 + (4ε)−1b2) gives
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∫

∂Ω

Ar(∇~u,∇~u) dσ ≤ Cε

∫

N

|∂r
ν(~u, π)|2 dσ + Cε

∫

D

|∇tan~u|
2 dσ

+ ε

∫

∂Ω

|∇~u|2 dσ + ε

∫

D

π2 dσ + C

∫

Ω

[|∇~u|2 + π2] dx. (4.12)

If |r| < 1, then |∇~u|2 ≤ CrAr(∇~u,∇~u) by (2.17), and so (4.3) follows from (4.12) and (4.7) after
choosing ε small enough. Now, consider the case when r = 1. Subtracting one-fourth of (4.5) from
(4.11) with r = 0 leads to

∫

N

[|∇~u|2 − 1
4π

2]〈~h, ~ν〉 dσ −

∫

D

[|∇~u|2 + 1
4π

2]〈~h, ~ν〉 dσ

=

∫

N

〈∂0
ν(~u, π),∇h~u〉 dσ +

∫

D

[A0(∇~u,∇
h
τ~u) − π〈(∇~u)~ν, h〉] dσ

+1
2

∫

∂Ω

〈∂−1
ν (~u, π), (∇~u)~h〉 dσ +

∫

Ω

Oh dx (4.13)

= 1
2

∫

N

〈∂1
ν(~u, π),∇h~u〉 dσ +

∫

D

[A0(∇~u,∇
h
τ~u) − π〈(∇~u)~ν, h〉] dσ

−1
2

∫

D

〈∂−1
ν (~u, π),∇h~u〉 dσ + 1

2

∫

∂Ω

〈∂−1
ν (~u, π), (∇~u+ ∇~u⊤)~h〉 dσ +

∫

Ω

Oh dx.

Then since

〈∂−1
ν (~u, π),∇h~u〉 = 〈(∇~u+ ∇~u⊤)~ν,∇h~u〉 − 〈(∇~u)~ν, 2∇h~u+ π~h〉, (4.14)

we further obtain

∫

N

|∇~u|2〈~h, ~ν〉 dσ −

∫

D

[|∇~u|2 + 1
4π

2]〈~h, ~ν〉 dσ

= 1
2

∫

N

[〈∂1
ν(~u, π),∇h~u〉 + 1

2π
2〈~h, ~ν〉] dσ +

∫

D

[A0(∇~u,∇
h
τ~u) −

1
2 〈(∇~u+ ∇~u⊤)~ν,∇h~u〉] dσ

+

∫

D

〈(∇~u)~ν,∇h~u− 1
2π
~h〉 dσ + 1

2

∫

∂Ω

〈∂−1
ν (~u, π), (∇~u + ∇~u⊤)~h〉 dσ +

∫

Ω

Oh dx. (4.15)

Also, since π = 〈(∇~u+ ∇~u⊤)~ν − ∂1
ν(~u, π), ~ν〉, we can estimate

π2 ≤ C|∇~u+ ∇~u⊤|2 + C|∂1
ν(~u, π)|2. (4.16)
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Let ~h be as in (2.2). Then applying Cauchy’s inequality with epsilon and (4.16) to (4.15) gives

∫

∂Ω

|∇~u|2 dσ + 1
4

∫

D

π2 dσ

≤ Cε

∫

N

|∂1
ν(~u, π)|2 dσ + Cε

∫

D

|∇tan~u|
2 dσ + Cε

∫

∂Ω

|∇~u+ ∇~u⊤|2 dσ

+ε

∫

∂Ω

|∇~u|2 dσ + ε

∫

D

π2 dσ + C

∫

Ω

[|∇~u|2 + π2] dx. (4.17)

Combining (4.17) and (4.12) with r = 1, as well as (4.7), allows us to derive (4.3) by choosing
appropriately small values of ε. �

Corollary 4.2 Let Ω be a graph Lipschitz creased domain in R
n, n ≥ 2. Let ∂Ω = N ∪ D with

N ∩D = ∅. For r ∈ (−1, 1] fixed, there exists C > 0 such that if ~u and π satisfy (4.2), then

∫

∂Ω

[|∇~u|2 + π2] dσ ≤ C

∫

N

|∂r
ν(~u, π)|2 dσ + C

∫

D

|∇tan~u|
2 dσ. (4.18)

Proof. The proof follows in the same manner as the proof of Theorem 4.1, except since Ω is a
graph domain, we can always choose ~h to be a constant vector field, and so any terms involving
derivatives of ~h vanish. �

5 The case of a creased graph Lipschitz domain

In this section we formulate and solve the mixed boundary value problem for the Stokes system in
a creased graph Lipschitz domain in R

n, n ≥ 3. The starting point is the following.

Proposition 5.1 Let Ω be a graph Lipschitz creased domain. For r ∈ (−1, 1] fixed, there exists
C > 0 such that

‖~f‖L2(∂Ω) ≤ C‖Tr
~f‖L̇2

1
(D)⊕L2(N), ∀~f ∈ L2(∂Ω). (5.1)

Proof. From Lemma 3.1, there exists C > 0 such that

‖~f‖L2(∂Ω) ≤ C‖∇tanS ~f‖L2(∂Ω), ∀ ~f ∈ L2(∂Ω). (5.2)

For ~f ∈ L2(∂Ω) arbitrary and fixed, set ~u := S ~f and π := Q~f in Ω, so that (3.4) holds. The
sequence of estimates proving (5.1) then reads

‖~f‖L2(∂Ω) ≤ C‖∇tanS ~f‖L2(∂Ω) ≤ C‖∇~u‖L2(∂Ω)

≤ C‖(~u|D, ∂
r
ν(~u, π)|N )‖L̇2

1
(D)⊕L2(N) = C‖Tr

~f‖L̇2

1
(D)⊕L2(N). (5.3)

Above, we have used Lemma 3.1, (2.23), Theorem 4.2, and (3.2). �

The following refines Proposition 5.1.
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Theorem 5.2 Let Ω be a graph Lipschitz creased domain. Then for r ∈ (−1, 1], the operator Tr

defined in (3.2) is an isomorphism.

In order to prove this theorem, we will next consider a similar mixed boundary value problem
for the Lamé system. For each µ, λ, r ∈ R, let

ãαβ
jk (r) := µδjkδαβ + r δjβδkα + (µ+ λ− r)δjαδkβ, 1 ≤ j, k, α, β ≤ n, (5.4)

and define

(L̃r~u)α := ∂j(ã
αβ
jk (r)∂kuβ) = µ∆uα + (µ+ λ)∂α(div ~u). (5.5)

Let us also consider the conormal derivative associated with the writing (5.4)-(5.5), namely

∂r
ν~u :=

(

νj ã
αβ
jk (r)∂kuβ

)

1≤α≤n

=
(

µ∇~u⊤ + r∇~u
)

~ν + (µ+ λ− r)(div ~u)~ν. (5.6)

Assume next that

µ > 0, λ ≥ −
2µ

n
, and r ∈ (−µ, µ], (5.7)

and consider the boundary value problem































µ∆~u+ (µ+ λ)∇(div ~u) = 0 in Ω,

~u
∣

∣

∣

D
= ~fD ∈ L̇2

1(D),

∂r
ν~u

∣

∣

∣

N
= ~fN ∈ L2(N),

M(∇~u) ∈ L2(∂Ω).

(5.8)

Recall the (matrix-valued) fundamental solution for the Lamé system, Eµ,λ := (Eµ,λ
jk )1≤j,k≤n,

given by

Eµ,λ
jk (x) := −

1

2ωn−1

(

3µ+ λ

µ(2µ+ λ)

1

n− 2

δjk
|x|n−2

+
µ+ λ

µ(2µ+ λ)

xjxk

|x|n

)

, x ∈ R
n \ {0}, n ≥ 3. (5.9)

Then in parallel to (2.21)-(2.22), we can define a single layer potential operator Sµ,λ for the Lamé
system as well as its boundary version Sµ,λ. These operators will satisfy a trace formula much like
(2.23), and a jump-formula similar to (2.30). More precisely, we have

∂r
ν

(

Sµ,λ
~f
)
∣

∣

∣

∂Ω
=

(

− 1
2I +Kµ,λ,r

)

~f, (5.10)
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where, at a.e. x ∈ ∂Ω, we have set

Kµ,λ,r
~f(x) := p.v.

∫

∂Ω

[

(3−r)µ+(1−r)λ
µ(2µ+λ)

]〈~ν(x), x − y〉~f(y)

2ωn−1|x− y|n
dσy

+ p.v.

∫

∂Ω

[

µ2−3rµ+(µ−r)λ
µ(2µ+λ)

]~ν(x)〈x − y, ~f(y)〉 − (x− y)〈~ν(x), ~f(y)〉

2ωn−1|x− y|n
dσy

+ p.v.

∫

∂Ω

[

(µ+r)(µ+λ)
µ(2µ+λ)

]n(x− y)〈~ν(x), x− y〉〈x− y, ~f(y)〉

2ωn−1|x− y|n+2
dσy. (5.11)

Let us also note that the analogues of (2.32)-(2.33) hold in this setting as well.
Next, in parallel to (3.2), we define an operator

Tµ,λ,r : L2(∂Ω) −→ L̇2
1(D) ⊕ L2(N)

Tµ,λ,r
~f :=

(

(Sµ,λ
~f)

∣

∣

∣

D
, ((−1

2I +Kµ,λ,r)~f)
∣

∣

∣

N

)

.
(5.12)

In a recent paper [4], R.Brown and I. Mitrea proved that the mixed boundary problem (5.8) for
the Lamé system is well-posed for all µ, λ, r as in (5.7). Then since a result similar to Theorem 3.3
also holds for the Lamé system, it follows that

Tµ,λ,r is an isomorphism for µ, λ, r as in (5.7). (5.13)

The reason for this discussion of the Lamé system is the following interesting connection between
the layer potentials associated with the Stokes and Lamé systems.

Lemma 5.3 For each r ∈ (−1, 1], recall that Tr is the operator associated with the Stokes problem
as in (3.2), and that Tµ,λ,r is the operator associated with the Lamé system as in (5.12). Then

Tr = lim
λ→∞

T1,λ,r, (5.14)

in the strong, operator norm sense.

Proof. This can be seen by directly comparing the corresponding kernels of the operators Tr and
T1,λ,r. In particular, it follows by comparing (2.18) and (5.9) that limλ→∞E1,λ

jk (x) = Ejk(x), and

therefore limλ→∞ S1,λ = S as operators from L2(∂Ω) into L̇2
1(∂Ω). In a similar manner, it is clear

from comparing (2.31) and (5.11) that limλ→∞K1,λ,r = Kr as operators on L2(∂Ω). �

Having established Proposition 5.1 and Lemma 5.3, we turn our attention to the

Proof of Theorem 5.2. To get started, fix r ∈ (−1, 1] and note that Tr in (3.2) is injective and has
closed range, by Proposition 5.1. In particular, Tr is a semi-Fredholm operator. Next, from (5.13),
each operator T1,λ,r is Fredholm with index zero, granted that λ ≥ −2/n (cf. (5.7)). It follows then
from (5.14) and the homotopic invariance of the index that Tr must also have index zero. Having
proved this, we may then conclude that Tr is, in fact, an isomorphism by recalling that Tr is also
injective. �
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Theorem 5.4 Let Ω be a graph Lipschitz creased domain in R
n, n ≥ 3. Then the mixed boundary

value problem (3.1) is well-posed.

Proof. This is an immediate consequence of Theorem 3.3 and Theorem 5.2. �

6 The case of a creased bounded Lipschitz domain

Fix a bounded Lipschitz domain Ω ⊂ R
n with connected boundary, and let D be a nonempty open

subset of ∂Ω. More conditions will be imposed later but, for now, we wish to recall several useful
estimates valid in this setting. First, Korn’s inequality gives that there exists C = C(∂Ω,D) > 0
such that

∫

Ω

[

|∇~u|2 + |~u|2
]

dx ≤ C

(
∫

Ω
|∇~u+ (∇~u)⊤|2 dx+

∫

D
|u|2 dσ

)

, (6.1)

for all vector fields ~u ∈ L2(Ω) with ∇~u ∈ L2(Ω). See, e.g., Corollary 5.9 in [1], or [6]. Second,
under the same assumptions, the following trace inequality holds:

∫

∂Ω
|~u|2 dσ ≤ C

∫

Ω
[|∇~u|2 + |~u|2] dx. (6.2)

See, e.g., [10] and [19]. Finally, we record a couple of versions of Poincaré’s inequality on ∂Ω and
Ω. Specifically, there exists C = C(∂Ω,D) > 0 such that

∫

∂Ω
|~u|2 dσ ≤ C

(
∫

∂Ω
|∇tan~u|

2 dσ +

∫

D
|~u|2 dσ

)

, (6.3)

for each vector field ~u ∈ L2
1(∂Ω), and

∫

Ω
|~u|2 dx ≤ C

(
∫

Ω
|∇~u|2 dx+

∫

D
|~u|2 dσ

)

, (6.4)

for all vector fields ~u ∈ L2(Ω) with ∇~u ∈ L2(Ω). Estimate (6.3) can be easily justified by locally
flattening ∂Ω and then invoking well-known results in R

n−1, whereas (6.4) can be found in, e.g.,
[1].

Moving on, let (~u, π) be a null-solution of the Stokes system in a bounded, Lipschitz domain
Ω ⊂ R

n, for which M(∇~u), M(π) ∈ L2(∂Ω). Green’s formula then gives

∫

Ω
Ar(∇~u,∇~u) dx =

∫

∂Ω
〈∂r

ν(~u, π), ~u〉 dσ. (6.5)

Let us also point out that, in a pointwise sense,

r ∈ (−1, 1] =⇒ Ar(∇~u,∇~u) ≥ Cr |∇~u+ (∇~u)⊤|2, (6.6)

for positive constants Cr (cf. (2.17)). Using (6.5), (6.6) and Korn’s inequality, we may estimate
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∫

Ω
[|∇~u|2 + |u|2] dx ≤ C

(

∫

Ω
|∇~u+ (∇~u)⊤|2 dx+

∫

D
|~u|2 dσ

)

≤ C
(

∫

Ω
Ar(∇~u,∇~u) dx+

∫

D
|~u|2 dσ

)

≤ C
(

∫

∂Ω
〈∂r

ν(~u, π), ~u〉 dσ +

∫

D
|~u|2 dσ

)

(6.7)

≤ C
(

∫

D
[(1 + ε−1)|~u|2 + ε|∂r

ν(~u, π)|2] dσ +

∫

N
[ε|~u|2 + ε−1|∂r

ν(~u, π)|2] dσ
)

= Cε

(

∫

D
|~u|2 dσ +

∫

N
|∂r

ν(~u, π)|2 dσ
)

+ ε
(

∫

D
|∂r

ν(~u, π)|2 dσ +

∫

N
|~u|2 dσ

)

.

Thus, from (6.7) and (6.2),

∫

Ω
[|∇~u|2 + |u|2] dx ≤ Cε

(

∫

D
|~u|2 dσ +

∫

N
|∂r

ν(~u, π)|2 dσ
)

+ε

∫

D
|∂r

ν(~u, π)|2 dσ. (6.8)

Next, we indicate how to estimate the pressure π in Ω, under the additional assumption that
N := ∂Ω \ D̄ is a nonempty subset of ∂Ω. Specifically, we claim that there exists a geometrical
constant C > 0 such that

∫

Ω

π2 dx ≤ C

∫

N

|∂r
ν(~u, π)|2 dσ + C

∫

Ω

|∇~u|2 dx. (6.9)

To see this, assume there exists ~w ∈ L2(Ω) for which



















div ~w = π in Ω,

~w
∣

∣

∣

D
= 0,

‖∇~w‖L2(Ω) ≤ C‖π‖L2(Ω),

(6.10)

where C > 0 depends only on Ω and D. Note that the above conditions on ~w also imply

‖~w‖L2(∂Ω) ≤ C‖π‖L2(Ω), (6.11)

by (6.2) and Poincaré’s inequality (6.4). Then, from the integration by parts formula (2.15),

∫

Ω

π2 dx =

∫

Ω

π(div ~w) dx =

∫

∂Ω

〈∂r
ν(~u, π), ~w〉 dσ −

∫

Ω

Ar(∇~u,∇~w) dx. (6.12)

Using Cauchy’s inequality with epsilon along with (6.10) and (6.11) in (6.12) leads to
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∫

Ω

π2 dx ≤ Cε

∫

N

|∂r
ν(~u, π)|2 dσ + ε

∫

N

|~w|2 dσ + Cε

∫

Ω

|∇~u|2 dx+ ε

∫

Ω

|∇~w|2 dx

≤ Cε

∫

N

|∂r
ν(~u, π)|2 dσ + Cε

∫

Ω

|∇~u|2 dx+ εC

∫

Ω

π2 dx. (6.13)

Then (6.9) follows by choosing ε small enough.
In order to construct ~w as in (6.10), let ~h ∈ C∞

0 (Rn) a vector field for which















supp ~h ∩ ∂Ω ⊆ N,

〈~h, ~ν〉 ≤ 0 on N,

〈~h, ~ν〉 ≤ −δ on N ′ ⊂ N,

(6.14)

for some δ > 0, where N ′ ⊂ N has positive surface measure. Then, since

∫

Ω

(div~h) dx =

∫

∂Ω

〈~h, ~ν〉 dσ ≤

∫

N ′

〈~h, ~ν〉 dσ ≤ −Cδ, (6.15)

it follows that

λ := −

∫

Ω π dx
∫

Ω(div~h) dx
(6.16)

is a well-defined real number, with the property that |λ| ≤ C
∫

Ω π
2 dx. Hence, if we now introduce

π′ := π + λdiv~h in Ω, we see that

∫

Ω
π′ dx = 0,

∫

Ω
(π′)2 dx ≤ C

∫

Ω
π2 dx. (6.17)

According to [2], one can then find ~v ∈ L2(Ω) such that



















div~v = π′ in Ω,

~v
∣

∣

∣

∂Ω
= 0,

‖∇~v‖L2(Ω) ≤ C‖π′‖L2(∂Ω).

(6.18)

See also [17] for more general results of this nature. It is then easily checked that ~w := ~v − λ~h
satisfies (6.10).

Having finished the proof of (6.9), we now return to the mainstream discussion. Under the
additional assumption that Ω is a creased domain, a combination of (6.9) and (6.8) gives

18



∫

Ω
[|∇~u|2 + |~u|2 + |π|2] dx ≤ Cε

(

∫

D
|~u|2 dσ +

∫

N
|∂r

ν(~u, π)|2 dσ
)

+ε

∫

∂Ω
|∂r

ν(~u, π)|2 dσ. (6.19)

Note that the last term above is ≤ ε
∫

∂Ω |∇~u|2 dσ + ε
∫

∂Ω π
2 dσ. In concert with (4.3) and (6.2),

this further yields

∫

∂Ω
[|∇tan~u|

2 + |~u|2 + π2] dσ ≤ C

∫

N
|∂r

ν(~u, π)|2 dσ + C

∫

D
[|∇tan~u|

2 + |~u|2] dσ. (6.20)

In place of Lemma 3.1 (which was used to establish (5.2)) in the graph-domain case, we shall
utilize the following result.

Lemma 6.1 Let Ω be a bounded Lipschitz domain. Then there exists C > 0 such that

‖~f‖L2(∂Ω) ≤ C‖S ~f‖L2

1
(∂Ω) + ‖Q~f‖L2(∂Ω), ∀ ~f ∈ L2(∂Ω), (6.21)

where Q~f := Q~f |∂Ω.

Proof. It has been proved in [9], [21] that that the operator

S : L2
ν(∂Ω) −→ L2

1,ν(∂Ω) (6.22)

is an isomorphism, where

L2
ν(∂Ω) := {~f ∈ L2(∂Ω) :

∫

∂Ω〈
~f, ~ν〉 dσ = 0},

L2
1,ν(∂Ω) := {~f ∈ L2

1(∂Ω) :
∫

∂Ω〈
~f, ~ν〉 dσ = 0}.

(6.23)

In particular, there exists C > 0 such that

‖~g‖L2
ν(∂Ω) ≤ C‖S~g‖L2

1,ν (∂Ω), ∀~g ∈ L2
ν(∂Ω). (6.24)

Going further, fix ~f ∈ L2(∂Ω) and set λ :=
∫

−∂Ω〈
~f, ~ν〉 dσ so that Q(λ~ν) = Q(λ~ν)|∂Ω = λ by

(2.26). Since ~f − λ~ν ∈ L2
ν(∂Ω), we may write

‖~f‖L2(∂Ω) ≤ ‖λ~ν‖L2(∂Ω) + ‖~f − λ~ν‖L2(∂Ω)

= ‖Q(λ~ν)‖L2(∂Ω) + ‖~f − λ~ν‖L2(∂Ω)

≤ ‖Q~f‖L2(∂Ω) + ‖Q(~f − λ~ν)‖L2(∂Ω) + ‖~f − λ~ν‖L2(∂Ω)

≤ ‖Q~f‖L2(∂Ω) + C‖~f − λ~ν‖L2(∂Ω)

≤ ‖Q~f‖L2(∂Ω) + C‖S(~f − λ~ν)‖L2

1
(∂Ω)

= ‖Q~f‖L2(∂Ω) + C‖S ~f‖L2

1
(∂Ω), (6.25)
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where the next-to-last inequality relies on (6.24), while the last one uses (2.24). This finishes the
proof of the lemma. �

We are now ready to state and prove the analogue of Proposition 5.1 for bounded domains. To
set the stage, much as in (3.2), we define the operator

Tr : L2(∂Ω) −→ L2
1(D) ⊕ L2(N), Tr

~f :=
(

(S ~f)
∣

∣

∣

D
, ((−1

2I +Kr)~f)
∣

∣

∣

N

)

. (6.26)

Proposition 6.2 Let Ω ⊆ R
n, n ≥ 3, be a Lipschitz creased domain. For each r ∈ (−1, 1] there

exists C > 0 such that

‖~f‖L2(∂Ω) ≤ C‖Tr
~f‖L2

1
(D)⊕L2(N), (6.27)

for all ~f ∈ L2(∂Ω).

Proof. Let ~f ∈ L2(∂Ω) be arbitrary and set ~u := S ~f , π := Q~f in Ω (so that (3.4) holds). In
concert, Lemma 6.1, (2.23), (2.29), and (6.20) yield

‖~f‖L2(∂Ω) ≤ C‖S ~f‖L2

1
(∂Ω) + C‖Q~f‖L2(∂Ω)

≤ C‖~u‖L2

1
(∂Ω) + C‖π‖L2(∂Ω) ≤ C‖∂r

ν(~u, π)‖L2(N) + C‖~u‖L2

1
(D)

= C‖Tr
~f‖L2

1
(D)⊕L2(N), (6.28)

for some finite C = C(Ω,D,N, r) > 0. �

Consider now the one-parameter family of mixed boundary value problems for the Stokes system
in a bounded, Lipschitz domain Ω:































∆~u−∇π = 0 and div ~u = 0 in Ω,

~u
∣

∣

∣

D
= ~fD ∈ L2

1(D),
[

[r(∇~u) + (∇~u)⊤]~ν − π~ν
]
∣

∣

∣

N
= ~fN ∈ L2(N),

M(∇~u), M(~u), M(π) ∈ L2(∂Ω),

(6.29)

where r ∈ R and D,N partition ∂Ω.

Theorem 6.3 Let Ω ⊂ R
n, n ≥ 3, be a bounded creased Lipschitz domain with connected boundary.

Then the mixed boundary value problem (6.29) is well-posed for each r ∈ (−1, 1].

Proof. It has been proved in [9], [21] that for any bounded Lipschitz domain Ω, conditions (3.4) in
Lemma 3.2 imply that there exists ~f ∈ L2(∂Ω) such that ~u = S ~f and π = Q~f in Ω. With this in
hand one can then check, much as in the proof of Theorem 3.3, that

Tr in (6.26) is an isomorphism ⇐⇒ the mixed problem (6.29) is well-posed. (6.30)
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The fact that the operator Tr in (6.26) is an isomorphism can, in turn, be established with the help
of Proposition 6.2 and Lemma 5.3, by proceeding as in the proof of Theorem 5.2 and invoking the
results in [4]. �

We conclude with a few remarks.

Remark 1. While here it has been hypothesized that ∂Ω is connected, for practical applications it
is certainly of interest to consider domains with a nontrivial topology. In the case when either D,
or N , is empty this has recently been done in [21], and it is natural to speculate that some of the
ideas developed there could be used to further extend the current results.

Remark 2. Dictated by practical considerations, it is of interest to study boundary value problems
for the Stokes system equipped with other types of mixed conditions, such as

prescribing ~utan and
{

[(∇~u) + (∇~u)⊤]~ν
}

tan
on N, (6.31)

in place of the third condition in (1.1).

Remark 3. As already pointed out in the Introduction, it is of interest to determine the optimal
range of p’s for which the Lp-version of (1.1) is well-posed. Prior work in the case of the Laplace
operator ([3]), and the Stokes system when either D = ∅, or N = ∅, ([21]) suggests that, at least
when n = 3, the current results should have suitable Hardy-space versions whenever 1−ε < p < 2+ε.
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