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Abstract. We study the boundary regularity of solutions of the mixed prob-

lem for Laplace’s equation in a Lipschitz graph domain Ω whose boundary is

decomposed as ∂Ω = N∪D, where N∩D = ∅. For a subclass of these domains,
we show that if the Neumann data g is in Lp(N) and if the Dirichlet data f

is in the Sobolev space Lp,1(D), for 1 < p < 2, then the mixed boundary
problem has a unique solution u for which N(∇u) ∈ Lp(∂Ω), where N(∇u) is
the non-tangential maximal function of the gradient of u.

1. Introduction

In this paper, we consider the mixed boundary value problem for Laplace’s
equation in a domain Ω ⊂ Rn, n ≥ 3. We assume that the boundary of Ω is
decomposed as ∂Ω = N ∪ D, where N ∩ D = ∅. The mixed problem is stated as
follows. Given functions fN and fD, find a function u which satisfies

∆u = 0 in Ω,
u = fD on D,
∂u
∂ν = fN on N ,

(1)

where ∂u
∂ν = ∇u · ν represents the outer normal derivative on ∂Ω. Problems of this

kind, including those with elliptic operators more general than the Laplacian and
with first order data more general than the normal derivative, have been studied for
a long time from many points of view. It is well known that solutions exist under
mild conditions on the domain and the data. However, it is also known that the
solutions of the more general mixed problems are not generally smooth, regardless
of how regular the data may be. In particular, problems arise in a neighborhood
of the boundary between N and D. The typical counterexample is given by the
harmonic function

u(x, y) = Im(x+ iy)1/2 , x ∈ R , y > 0,

which is zero on the positive real line and whose normal derivative is zero on the
negative real line.

1991 Mathematics Subject Classification. Primary 35J25.
Both authors received partial support from the National Science Foundation, Division of

Mathematical Sciences.

c©0000 (copyright holder)

1



2 JEFFERY D. SYKES AND RUSSELL M. BROWN

In results dealing with classical solutions, much work has focused on the con-
ditions necessary to obtain more regular solutions. In [15] and [16], Lieberman
addresses the Hölder continuity of classical solutions of the mixed problem with
smooth data, proving optimal regularity results under certain conditions requiring
compatibility between the elliptic operator and the boundary decomposition.

As another example, Azzam and Kreyszig [1] consider the mixed problem for
elliptic equations in a plane domain with corners. Assuming that the Dirichlet
data has Hölder continuous second derivatives and the remaining data has Hölder
continuous first derivatives, they prove that the solution has Hölder continuous
second derivatives, provided certain conditions are met which relate the interior
angle at a corner with the coefficients of the operator at that corner. Their paper
also provides a good history of the mixed problem on both smooth domains and
domains with corners on the boundary.

Much effort has also been dedicated to the study of the mixed problem in
polygonal domains. In his monograph, Grisvard [12] addresses both generalized
solutions (Chapter 4) and classical solutions (Chapter 6), proving existence and
regularity for a larger class of spaces than we consider in our results. This is to be
expected, however, as we consider a larger class of domains.

A more recent result is that of Giuseppe Savaré [19] who considers the mixed
problem in smooth (C1,1) domains and who shows that with sufficiently regular
data, the solution lies in the Besov space B

2,3/2
∞ (Ω). This addresses one of the

limiting cases of Brown’s paper [3] where it is shown that if we consider the creased
domains defined below, then we obtain a non-tangential maximal function estimate
which implies that the solution lies in B

2,3/2
2 (Ω). The argument connecting the

nontangential function estimates and the Besov space results requires the square
function studied by Dahlberg [7] and the arguments in Fabes’s paper [10]. Strictly
speaking, there is no overlap between the results of Brown and Savaré since no
smooth domain satisfies the hypotheses in Brown’s results and Savaré requires
additional smoothness hypotheses on the data and the domain, compared to the
results of Brown.

Since we are considering harmonic functions, our solutions are smooth in the
interior. Our interest is in obtaining regularity on the boundary. In particular,
we consider a specific class of Lipschitz domains and show that the solution has
∇u ∈ Lp(∂Ω) when the data fN is in Lp(N) and fD is in the Sobolev space Lp,1(D),
1 < p < 2. This result requires, roughly speaking, that D and N meet at an angle
which is strictly less than π. See Section 2 for the precise hypotheses.

Our estimates for solutions of the mixed problem will involve the nontangential
maximal function. For a function w defined on Ω, the nontangential maximal
function of w, denoted N(w), is defined for y ∈ ∂Ω by

N(w)(y) = sup
x∈Γα(y)

|w(x)|,

where for α > 0, the nontangential approach region Γα(y) is defined as

Γα(y) = {x ∈ Ω : |x− y| < (1 + α)δ(x)}.

In this definition and below, we are using δ(x) = dist (x, ∂Ω) to denote the distance
to the boundary. We note that the dependence of N(w) on α is not significant.
In particular, nontangential maximal functions defined using different values of α
have comparable Lp-norms (see [24], page 367, for example). For the purposes of
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this discussion, we require that, in the graph domains defined below, α be chosen
so that y+ ten ∈ Γα(y) for any t > 0. Here en is the unit vector in the xn direction.

Boundary values are defined in the nontangential sense: we say that u = f on
∂Ω if for a.e. y ∈ ∂Ω,

lim
x→y

x∈Γα(y)

u(x) = f(y).

Except for a set of measure zero, the existence of this limit is independent of the
cone opening α. By the outer normal derivative ∂u

∂ν (y), we mean ν(y) ·∇u(y), where
∇u(y) is defined nontangentially as above. If Ω is a Lipschitz graph domain and u
is harmonic on Ω with N(u) <∞ a.e. on ∂Ω, then u is known to have nontangential
limits a.e. on ∂Ω [9].

Our goal is to prove an Lp estimate for solutions of (1):

‖N(∇u)‖Lp(∂Ω) ≤ C
(
‖fD‖Lp,1(D) + ‖fN‖Lp(N)

)
.

For 1 < p < 2, this first appeared in the Ph.D. thesis of Jeffery Sykes [23]. For
p = 2, this result is due to Brown [3]. His methods are similar to those used by
Jerison and Kenig [13] for the Dirichlet and Neumann problems, but Brown makes
a new application of the Rellich identity. In particular, he uses a smooth vector-field
α so that |α ·ν| ≥ δ > 0 a.e. on ∂Ω, but α ·ν changes sign as we cross the boundary
between D and N . This can only happen when the normal is discontinuous, which
helps explain our hypotheses on ∂Ω, N , and D. This work provides a partial answer
to problem 3.2.15 in Kenig’s CBMS Lecture Notes [14].

In Section 2, we define the class of domains under consideration. The remain-
der of Section 2 concentrates on proving an L1 estimate for the L2 nontangential
solution when the Neumann data is an atom for a Hardy space and the Dirichlet
data is zero. To accomplish this, we mimic the work of Dahlberg and Kenig [8],
reflecting the solution in Ω to obtain a solution in a neighborhood of infinity of an
elliptic divergence form operator. This allows us to use the asymptotic expansion of
Serrin and Weinberger [20] to prove that the solution decays at infinity faster than
a fundamental solution. This and the same use of the Rellich identity as mentioned
above then leads to the atomic estimate. In Section 3, we prove the uniqueness of
solutions to the mixed problem with N(∇u) ∈ Lp(∂Ω). This is proven by duality,
using solutions to the mixed problem with nice data. In Section 4, we give the final
steps of the proof of the Lp-result.

We follow the standard convention that C is a constant which varies. Since we
are working on graph domains, the constants will depend only on the dimension
and the number M which appears below.

2. Atomic Estimates

We begin by defining our problem more precisely. For any point x ∈ Rn,
n ≥ 3, we denote x = (x′, xn) = (x1, x

′′, xn), where x1, xn ∈ R, x′′ ∈ Rn−2, and
x′ = (x1, x

′′) ∈ Rn−1. Let Ω = {x : xn > φ(x′)} be a Lipschitz graph domain, and
let ψ : Rn−2 → R be a Lipschitz function. Define

N = {x : x1 ≥ ψ(x′′)} ∩ ∂Ω
D = {x : x1 < ψ(x′′)} ∩ ∂Ω.(2)

We assume there is a constant M so that φ and ψ satisfy

‖∇φ‖L∞(Rn−1) ≤M, and ‖∇ψ‖L∞(Rn−2) ≤M.
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We also assume that there exist δD ≥ 1/M and δN ≥ 1/M so that φ satisfies

∂φ

∂x1
≥ δN a.e. on {x′ : x1 > ψ(x′′)}(3)

∂φ

∂x1
≤ −δD a.e. on {x′ : x1 < ψ(x′′)}.(4)

These conditions are due to Brown [3], whose paper provides an example that
illustrates their necessity. Let ζ = {x ∈ ∂Ω : x1 = ψ(x′′)} be the boundary
between N and D. We will refer to ζ as the “crease” of ∂Ω and we will call the
graph domains we have described creased domains.

We will denote by φN the restriction of φ to {x′ : x1 ≥ ψ(x′′)}, and φD will
denote the restriction of φ to {x′ : x1 < ψ(x′′)}. In the construction below, we will
need to have φD and φN defined on all of Rn−1 so that the conditions (3) and (4)
still hold. This is easily accomplished by setting

φD(x1, x
′′) = φD(ψ(x′′), x′′)− δD(x1 − ψ(x′′)), x1 ≥ ψ(x′′)

φN (x1, x
′′) = φD(ψ(x′′), x′′) + δN (x1 − ψ(x′′)), x1 ≤ ψ(x′′).

In order to lighten the notation, we use the same notation for these extensions to
Rn−1. Note that with these definitions, we have φ = max(φD, φN ).

Lemma 2.1. For each x1, the equation x1 = φD(t, x′′) has a unique solution
and if we let t = h(x1, x

′′) denote the solution, then function h is Lipschitz on Rn−1

and the Lipschitz constant depends only on M and δD.

Proof. Because of our assumption (4), the function t → φD(t, x′′) is strictly
monotone and maps R onto R. Hence, the existence of h follows. If we differentiate
the equation

x1 = φD(h(x1, x
′′), x′′)

formally, we obtain

1 =
∂φD
∂x1

(h(x1, x
′′), x′′)

∂h

∂x1
(x1, x

′′)

0 =
∂φD
∂x1

(h(x1, x
′′), x′′)

∂h

∂xj
(x1, x

′′) +
∂φD
∂xj

(h(x1, x
′′), x′′), j = 2, . . . , n− 2.

Since we have ∂φD/∂x1 ≤ −δD, we can solve for the gradient of h and obtain
‖∇h‖L∞(Rn−1) ≤ max(M, 1)/δD. If φD were C1 and not just Lipschitz, then the
implicit function theorem would imply that h is differentiable and the formal cal-
culation would imply that ∇h is bounded.

In the Lipschitz case, a little more work is needed. We regularize the function
φD with a standard mollifier to obtain φD,ε = φD ∗ ηε. If we also assume that
ηε ≥ 0, then we have that φD,ε also satisfies

∂φD,ε
∂x1

≤ −δD.

We let hε be the solution of φD,ε(hε(x1, x
′′), x′′) = x1. Since φD,ε is smooth, the

argument above allows us to conclude that ‖∇hε‖L∞(Rn−1) is bounded. We claim
that hε converges to h uniformly as ε→ 0+. To establish this claim, we observe that
because φD is Lipschitz, then ‖φD,ε − φD‖∞ ≤ Mε. Using this, the monotonicity
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of φD,ε and the definition of h, we obtain

φD,ε(h(x1, x
′′) + t, x′′) ≤ x1 +Mε− δDt, t > 0

φD,ε(h(x1, x
′′) + t, x′′) ≥ x1 −Mε+ δDt, t < 0.

Thus, we can conclude that hε(x1, x
′′) must satisfy

|h(x1, x
′′)− hε(x1, x

′′)| ≤Mε/δD.

Since, we have hε converges to h uniformly and ‖∇hε‖L∞(Rn−1) is bounded inde-
pendently of ε, it follows that h is Lipschitz.

Using the function h, we define a reflection in the graph of φD by

R1(x1, x
′′, xn) = (2h(xn, x′′)− x1, x

′′, xn).

As the figure indicates, this maps acts by mapping a point which is s units to

1

ϕ
D

ϕ
N

R  (x)

γ

x

the right of the graph of φD to a point which is s units to the left of the graph of
φD. It is clear that R1 is Lipschitz and that R1 ◦ R1 is the identity, hence R1 is
bi-Lipschitz. Next, we define Ω1 = R1(Ω)∪D ∪Ω. We claim that the image of the
graph {(x′, xn) : xn = φN (x′)} is a Lipschitz graph on all of Rn−1.

To see this, we would like to apply the implicit function theorem to write the
set {(x′, xn) : xn = φN (R′1(x′, xn))} in the form {(x′, xn) : xn = γ(x′)} (see figure
above). As in Lemma 2.1, we cannot do this directly. Instead, we regularize,
apply the implicit function theorem and take a limit. The details are omitted,
see [23]. Now, we can write Ω1 = {(x′, xn) : xn > φ1(x′)} where the function
φ1 = max(φN , γ).

Next, we define R2 to be a reflection in ∂Ω1 by setting

R2(x′, φ1(x′) + t) = (x′, φ1(x′)− t).
Using these reflections, we can change variables to obtain a divergence form operator
L = div A∇ with bounded measurable coefficients so that ∆u = 0 in Ω if and only
if Lu ◦ R1 = 0 in R1(Ω) and so that Lu = 0 in Ω1 if and only if Lu ◦ R2 = 0 in
R2(Ω). A similar construction is used by Dahlberg and Kenig, see [8] or [23] for
details.

Finally, we introduce notation for function spaces. By Lp(N), we mean the
standard space of functions f with |f |p integrable with respect to surface measure
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on N . We denote by Lp,1(D) the Sobolev space of functions with one derivative
in Lp(D). More precisely, f ∈ Lp,1(D) if f(x′, φ(x′)) ∈ Lp,1({x′ : x1 < ψ(x′′)}).
We use the norm ‖f‖Lp,1(∂Ω) = ‖∇tanf‖Lp(∂Ω) on Lp,1(D). Since we only consider
p ≤ 2 and n ≥ 3, by Sobolev embedding on the n−1 dimensional boundary, we can
choose a representative which vanishes at infinity, except when n = 3 and p = 2.
In this case, we will only have uniqueness up to a constant.

In this section, we will prove an L1 estimate for the nontangential maximal
function of the gradient of the solution when the Neumann data is an atom and
the Dirichlet data is zero. Recall that a bounded function a is called a ∂Ω-atom if
a is supported on a surface ball B = Br(y)∩∂Ω = {x ∈ ∂Ω : |x− y| < r} such that
‖a‖L∞(∂Ω) ≤ 1/σ(B) and

∫
a dσ = 0.

We call a function a an N -atom if a = ā|N , where ā is a ∂Ω-atom. Note that
an N -atom a may not have mean value 0, so a is not necessarily a ∂Ω-atom. We
then define the N -atomic Hardy space as the `1-span of the atoms aj ,

H1
at(N) = {f : f =

∑
λjaj with

∑
|λj | <∞}

with the norm of f ∈ H1
at(N) defined as

‖f‖H1
at(N) = inf{

∑
|λj | : f =

∑
λjaj}.

By this definition, f ∈ H1
at(N) if and only if f = f̄ |N , where f̄ ∈ H1

at(∂Ω), and it
also follows that

inf{‖f̄‖H1
at(∂Ω) : f = f̄ |N , f̄ ∈ H1

at(∂Ω)}

provides an equivalent norm on H1
at(N). See the papers of Chang, Krantz, and

Stein [6] and Chang, Dafni, and Stein [5] for further discussion of defining Hardy
spaces on domains in Rn.

We consider the mixed problem with zero Dirichlet data and N -atomic Neu-
mann data, a. Our goal is to show that for such a solution, we have the gradient
in L1(∂Ω). Thus the main result of this section is the following proposition.

Proposition 2.2. Let Ω with N and D be a creased domain. If a is an N -
atom and we solve the mixed problem (1) with data fD = 0 and fN = a, then the
solution u satisfies

‖N(∇u)‖L1(∂Ω) ≤ C
where the constant C depends only on M .

In order to prove this estimate, we first need to know a solution exists. This is
obtained from the earlier work of Brown [3].

Proposition 2.3. If Ω is a creased domain, fN ∈ L2(N) and ∇tanf ∈ L2(D),
then there is a unique solution to (1) with N(∇u) ∈ L2(∂Ω).

Proof. The existence is obtained by a straightforward extension of the argu-
ments in Brown [3]. This paper considers the equation ∆− k2 for k ∈ R \ {0}, the
extension to k = 0 is straightforward. The uniqueness in graph domains may be
proven using the idea of this paper. If we apply the divergence theorem, we obtain
that ∫

∂Ω

|∇u|2e1 · ν − 2
∂u

∂ν
e1 · ∇u dσ = 0

since div (|∇u|2e1 − 2∇ue1 · ∇u) = 0. This is a version of the Rellich identity, see
[18, 13]. The condition N(∇u) ∈ L2(∂Ω) is used to justify the integration by parts.
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The hypotheses on Ω are designed so that the vector e1 satisfies e1·ν > δN/
√

1 +M2

a.e. on N and e1 · ν ≤ −δD/
√

1 +M2 a.e. on D. Rearranging terms and using
Cauchy’s inequality gives∫

N

|∇tanu|2 dσ +
∫
D

∣∣∣∣∂u∂ν
∣∣∣∣2 dσ ≤ C

(∫
D

|∇tanu|2 dσ +
∫
N

∣∣∣∣∂u∂ν
∣∣∣∣2 dσ

)
.(5)

The estimate (5) tells us that that if u has zero data in the mixed problem, then
∇u = 0 on ∂Ω. Now uniqueness in the regularity problem tells us that u = 0. See
the work of Dahlberg and Kenig [8] for uniqueness of the regularity problem in
graph domains.

A key step in the proof of Proposition 2.2 is to consider solutions of a divergence
form operator in the complement of a ball. There is an asymptotic expansion for
these solutions which allows us to conclude that the solution has some extra decay
if a certain integral vanishes. This is an old result of Serrin and Weinberger [20]
which recall here. If u is a solution of a elliptic divergence form operator div A∇
in the complement of a ball, Rn \ B1(x0), then we have the following asymptotic
expansion for u

u(x) = u∞ + βG(x) + w(x)(6)

where u∞ is a constant. The function G is the green’s function with pole at x0

which is known to satisfy G(x) ≤ C|x − x0|2−n. The constant β is the outflow
which is given by

β =
∫

Rn

A(x)∇u(x) · ∇ψ(x) dx

where ψ is any Lipschitz function which is one in a neighborhood of ∞ and zero in
a neighborhood of {x : |x− x0| ≤ 1}. Finally, v is a function which satisfies

|v(x)| ≤ C|x− x0|2−n−δ
∫

2<|x−x0|<3

|u(x)| dx

for constant C and δ > 0 which depend only on the dimension and the bounds on
the eigenvalues of the matrix of coefficients A.

Proof. Now we turn to the proof of Proposition 2.2. We consider an N -atom
a. Since the estimate we desire to prove and the class of creased domains are
invariant under dilation, we may assume that the ball appearing the definition of
an N -atom has radius r = 1. According to Proposition 2.3, there is a solution u to
(1) with fD = 0 and fN = a and with

‖N(∇u)‖L2(∂Ω) <∞.

Our goal is to show that ∇u decays sufficiently fast at infinity so that N(∇u) ∈
L1(∂Ω). We extend u by odd reflection about D using the map R1 defined above
to obtain u in Ω1, satisfying

u1 ◦R1 = −u1

Lu1 = 0

for the divergence form elliptic operator L we defined above. Since N(∇u) ∈
L2(∂Ω), it follows that ∇u1 ∈ L2(B) for any bounded set B ⊂ Ω1 and thus that
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u1 is a weak solution of the Neumann problem{
Lu = 0 in Ω1

A∇u · ν = a+ a∗ on ∂Ω1

where a∗(y) = −(DR1 ◦R−1
1 )tν(y) · ν(R−1

1 (y))a(R1(y)). Since we do not yet know
that ∇u is in L2(Ω), we require that the test functions in the weak formulation
of this problem be zero outside some large ball. However, we do not require test
functions to vanish on ∂Ω. Changing variables, we see that∫

N

a(y) dσ(y) = −
∫
R1(N)

a∗(y) dσ(y).

Thus, if dist (supp a,D) < 1, then λ(a+a∗) is an atom for ∂Ω1, where the constant
λ depends only on M . If dist (supp a,D) > 1, then we have that a is a ∂Ω1 atom
and λa∗ is a multiple of a ∂Ω1 atom for λ depending only on permissible quantities.

We may reflect in ∂Ω1 using R2 to obtain an even extension u2 which solves
Lu2 = 0 in Rn \ supp (a+a∗). Applying the theorem of Serrin and Weinberger (6),

u2(x) = βg(x) + w(x)(7)

where |w(x)| = O(|x|2−n−δ) for some δ > 0. We have that u∞ = 0 since u vanishes
on D. Now the estimate |u2(x)| ≤ C|x|2−n for x large and Caccioppoli’s inequality
implies ∇u ∈ L2(Rn), n ≥ 3. Thus we can conclude that the solution u2 satisfies

‖∇u2‖L2(Rn) <∞.(8)

Our next step is to claim that there exist C > 0 and δ > 0 so that

|u(x)| ≤ C|x|2−n−δ, x ∈ Ω.(9)

In this estimate, the constant C depends only on the constant M . In order to obtain
the correct dependence of the constant, we must be more careful than we were in the
previous paragraph. This requires consideration of the cases dist (supp a,D) ≤ 1
and dist (supp a,D) > 1 separately.

We first consider dist (supp a,D) ≤ 1. We recall that in the expansion (7),
C0 = 0 since u = 0 on D and

β =
∫

Rn

A(x)∇η(x) · ∇u2(x) dx

where η is any function which is zero on the support of the Neumann data a and
is identically one for all x sufficiently large.

As in Dahlberg and Kenig [8, p. 444], we have∫
Rn

A(x)∇η(x)∇u(x) dx = 2
∫
∂Ω1

(a(x) + a∗(x)) dσ(x) = 0

and hence β = 0. Now, we can estimate u in the set of points which are at most
distance 2 from the support of a using the L2(∂Ω) estimate for N(∇u). Since u
vanishes on D, a Poincaré inequality gives us an estimate for the integral of |u|2
in Ω near support a. This gives the estimate (9) with correct dependence of the
constant.

If dist (supp a,D) > 1, then the above procedure gives the correct order at
infinity, but the constant C depends on the distance between the support of a and
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a∗. In this case, we need to split the solution u1 = u11 + u12 where u11 is a weak
solution of the Neumann problem{

Lu11 = 0, in Ω1
∂u11
∂ν = a, on ∂Ω1.

The function u12 solves the same problem with data a∗ instead of a. We claim
these solutions each satisfy the estimates

|u11(x)| ≤ C dist (x, supp a)2−n−δ, x ∈ Ω1, dist (x, supp a) > 1(10)

|u12(x)| ≤ C dist (x, supp a∗)2−n−δ, x ∈ Ω1, dist (x, supp a∗) > 1(11)

Together, (10) and (11) imply the estimate (9) in the second case.
The proof of (10) and (11) depends on reflecting in Ω1 and then using the Serrin-

Weinberger theorem (6). Again, we have u∞ = 0 since the energy solutions are in
L2n/(2n−2)(Rn) and β = 0 since a and a∗ have mean value zero. The dependence of
the constant (and the existence of u11 and u12) depends on the following boundary
Poincaré inequality. In this Lemma, we use −

∫
E

to denote the average over E.

Lemma 2.4. If Ω is a Lipschitz graph domain, u is a function with ∇u in
L2(Ω), x ∈ ∂Ω and r > 0, then with

ū = −
∫
Br(x)∩∂Ω

u(x) dσ

we have that ∫
∂Ω∩Br(x)

|u(x)− ū|2 dσ(x) ≤ Cr2

∫
Ω∩Br(x)

|∇u(x)|2 dx.

As a consequence of this Lemma, we can show that the map

u→
∫
∂Ω1

au dσ

is a continuous linear functional on the Sobolev space L̇2,1(Ω1) which we norm
with (

∫
Ω1
|∇u|2 dx)1/2. Thus, we can use Lax-Milgram to show that there is a weak

solution of the Neumann problem for L with data a and that this solution satisfies
‖∇u‖L2(Ω1) ≤ C (the constant depends on r in general, but here we have no r
dependence since we have already set r = 1). Then, Sobolev embedding implies
that the solution lies in L2n/(2n−2)(Ω1) and this can be used to show that the
constants in (10) and (11) depend only on the Lipschitz constant M . We also note
that the estimate (8) and uniqueness in the class of solutions with ∇u in L2(Ω1) is
needed to show u1 = u11 + u12.

Now from the estimate (9) we can use Caccioppoli’s inequality to find that on
the ring

Rk = {x : 2k ≤ dist (x, supp a) < 2k+1},
we have ∫

Rk∩Ω

|∇u|2 dx ≤ C2k(2−n−2δ), k = 0, 1, . . .(12)

for some constant C = C(M) and for δ as in the Serrin-Weinberger theorem (see
(9)).

Our next step is to obtain estimates for ∇u on the boundary. We let η ≥ 0 be
a cutoff function with η = 1 on Rk and supp η ⊂ ∪|j|≤1Rk+j and |∇η| ≤ C2−k.
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We again use the Rellich identity as in the proof of Proposition 2.3, but with e1

replaced by ηe1 to obtain that∫
Rk∩∂Ω

|∇u(x)|2 dσ(x) ≤ C

∫
∂Ω

η(x)|∇u(x)|2 dσ(x)

≤ C

∫
Ω

|∇η(x)||∇u(x)|2 dx.

Now, Caccioppoli’s inequality (12) and our observation that u has mixed data 0
away from supp a gives that∫

Rk∩∂Ω

|∇u(x)|2 dx ≤ C2k(1−n−2δ), k ≥ 1.

Finally, the localization argument as in Dahlberg and Kenig [8, p. 445] gives∫
Rk

N(∇u)(x)2 dσ(x) ≤ C2k(1−n−2δ).

This estimate implies that we have∫
∂Ω

N(∇u)(x) dσ(x) ≤ C.

This concludes the proof of the existence of solutions as described in Proposition
2.2.

Finally, we give the main result of this section. The existence of solutions with
atomic data. Before we can do this, we must define the space H1,1

at (D), the space of
functions with one derivative in the Hardy space. The simplest way to define this
is to observe that, like H1(N), H1,1

at (D) is the restriction to D of the corresponding
space on ∂Ω. Thus, we say b is a 1-atom for ∂Ω if b is supported in a ball Br(x)∩∂Ω
and ‖∇tanb‖L∞(Br(x)∩∂Ω) < r2−n. As before, b is 1-atom for D if b = b̄|D for b̄ a
1-atom for ∂Ω. Finally, the space H1,1

at (D) is defined as the `1-span of 1-atoms for
D.

Theorem 2.5. Let Ω, N and D give a creased domain. If fN is in H1(N)
and fD is in H1,1

at (D), then there exists a solution of the mixed problem (1) which
satisfies

‖N(∇u)‖L1(∂Ω) ≤ C(‖fN‖H1
at(N) + ‖fD‖H1,1

at (D)).

Furthermore, if the fN is also in L2(N) and fD is also in L2,1(D), then the solution
satisfies N(∇u) ∈ L1(∂Ω) ∩ L2(∂Ω).

Proof. The result for Hardy spaces follows from Proposition 2.2. To see this,
we first use the result of Dahlberg and Kenig on the regularity of the solution of the
Dirichlet problem when the Dirichlet data is in space H1,1

at (∂Ω). This result allows
us to reduce the case when fD is zero. For this special case, we can write the data
fN as a sum of atoms and then add the solutions from Proposition 2.2.

The additional statements about L2, follow from the observation of Pipher and
Verchota [17] that if we take a L2 ∩H1 function, then the atomic decomposition
can be chosen so that the sum converges in L2 also. This technical observation is
needed in the interpolation argument in section 4.
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3. Uniqueness

Now we turn to uniqueness. This seems to be rather involved. The proof for
uniqueness in the Lp problem is the same as for the Hardy space problem, thus we
do them simultaneously.

Proposition 3.1. If Ω is a creased domain, N(∇u) ∈ Lp(∂Ω), 1 ≤ p < 2,
n ≥ 3 and u is a solution of the mixed problem with fD = 0 and fN = 0, then
u = 0.

Proof. The argument proceeds by duality. Thus, we consider a solution w
of the mixed problem with Dirichlet data gD, a Lipschitz function with compact
support in Rn and zero Neumann data. Thus w satisfies:

∆w = 0, in Ω
w = gD, on D
∂w
∂ν = 0, on N

The function gD will be a multiple of a 1-atom on D for the space H1,1
at (D). A

straightforward adaptation of the argument for existence of solutions with atomic
Neumann data allows us to show that the solution w satisfies

N(∇w) ∈ L1(∂Ω) ∩ L2(∂Ω).(13)

Next, we observe that the solution w lies in the Hölder space Cα(Ω̄) for some
α = α(M) > 0 and thus

‖u‖Cα(Ω̄) = sup
x6=y,x,y∈Ω

|w(x)− w(y)|
|x− y|α

≤ C(gD).(14)

The equality serves to define the Hölder semi-norm. The inequality in (14) is
probably well-known. It can be proven by reflecting w in the Neumann face N
and using the Hölder continuity at the boundary of weak solutions of the Dirichlet
problem (see [11]).

Since we have N(∇w) is in L1(∂Ω)∩L2(∂Ω), we can use a version of the Sobolev
embedding theorem to conclude that

N(w) ∈ L(n−1)/(n−2)(∂Ω)(15)

(see Brown [4] for a proof).
Next, we recall the (generalized) Riesz transforms on a Lipschitz graph domain.

If N(w) ∈ Lp(∂Ω), p <∞, then with r = δ(x)/2, we have

|∇w(x)| ≤ C

r
−
∫
Br(x)

|w(x)| dx ≤ Cδ(x)−1−(n−1)/p‖N(w)‖Lp(∂Ω).

Thus, we define for j = 1, . . . , n

wj(x) = −
∫ ∞
xn

∂w

∂xj
(x′, t) dt.(16)

The collection w1, . . . , wn satisfy

wn = w
∂wj
∂xk

=
∂wk
∂xj

j, k = 1, . . . , n(17)

n∑
j=1

∂wj
∂xj

= 0.
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The last two equations in (17) are the system for conjugate harmonic functions as
studied by Stein and Weiss [22]. Using square function arguments as in Stein’s
book, [21], one can show that

‖N(wi)‖Lp(∂Ω) ≤ C‖N(w)‖Lp(∂Ω), 0 < p <∞.(18)

The argument for the half-space as presented by Stein extends immediately to a
Lipschitz graph domain, once we have the equivalence of the non-tangential maxi-
mal function and the square function as proven by Dahlberg [7].

Next, we rely on additional ideas from Littlewood-Paley theory to show that
each wi is also in Cα(Ω̄). This is proven using two observations about harmonic
functions in Lipschitz graph domains. First, if w is Cα, 0 < α ≤ 1, and harmonic,
then for each multi-index β with |β| > 0,

sup
x∈Ω

δ(x)|β|−α
∣∣∣∣∂βw∂xβ

(x)
∣∣∣∣ ≤ C‖w‖Cα(Ω̄).(19)

This is proven by estimating the derivative of w(·) by the average of w(·)−w(x) on
a ball of radius half the distance to the boundary. Conversely, if w is differentiable
in a Lipschitz graph domain Ω, then

‖w‖Cα(Ω̄) ≤ sup
x∈Ω

δ(x)1−α|∇w(x)|.(20)

From (14), we have w = wn is Hölder continuous in Ω and thus the second deriva-
tives of w satisfy the condition (19). If we differentiate the definition of wi, (16),
and use (19) we obtain that the gradient of each wi satisfies

sup δ(x)1−α|∇wi(x)| ≤ C‖wn‖Cα(Ω̄).

Hence, from (20) we have that

‖wi‖Cα(Ω̄) ≤ C(gD).(21)

Next, we observe that if ‖N(w)‖Lp(Ω) < ∞ and ‖w‖Cα(Ω̄) < ∞, then w must
be bounded. To see this, use the nontangential maximal function to obtain that
w is bounded when δ(x) > 1 and then the Hölder continuity near the boundary.
Applying this observation to each wi, we conclude that each of the wi is bounded
in Ω. Combining the estimate (21) with the estimates (15) and (18) for each wi,
we obtain

‖N(wi)‖L(n−1)/(n−2)(∂Ω) + ‖wi‖L∞(Ω̄) ≤ C(gD).(22)

Now, we have u as in Proposition 3.1, a solution of the mixed problem with
N(∇u) ∈ Lp(∂Ω) and zero data in the mixed problem (1). For s > 0 we let
us denote a translation of u defined by us(x) = u(x + sen) and define wt(x) =
w(x+ ten). We consider us, wt and a cutoff function ηR which is one on a ball of
radius R and 0 outside a ball of radius 2R. Applying Green’s second identity gives∫

∂Ω

ηR(ut
∂ws
∂ν
− ws

∂ut
∂ν

) dσ =
∫

Ω

∇ηR(x) · (ut(x)∇ws(x)− ws(x)∇ut(x)) dx.

We consider, in turn, the various limits as t and s approach zero and R approaches
infinity. First, consider R going to infinity. Since N(∇u) is in Lp(∂Ω), the Sobolev
embedding Lemma in [4]

N(ut) ∈ Lp(n−1)/(n−1−p)(∂Ω), t ≥ 0.(23)
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Also, we have N(∇ws) ∈ L1(∂Ω) and for s > 0, |∇ws| ≤ Cs, when s > 0. Thus,∫
Ω

|∇ηR · (ut∇ws)| dx ≤ C
∫
{x:|x|≥cR}∩∂Ω

N(ut)N(∇ws) dσ

which vanishes in the limit as R → ∞ since u satisfies (23) and we have N(∇ws)
is in L1(∂Ω) ∩ L∞(∂Ω) (though with a constant which depends on s). Next, we
consider ∫

Ω

|ws∇ηR · ∇ut| dx ≤ C
∫
{x:|x|>cR}

N(ws)N(∇ut) dσ.

Since we have N(∇ut) ∈ Lp(∂Ω) for some p in [1, 2), and ws ∈ L(n−1)/(n−2)(∂Ω) ∩
L∞, we have that this term also vanishes in the limit as R →∞. Finally, we may
use dominated convergence to find the limit

lim
R→∞

∫
∂Ω

ηR(ut
∂ws
∂ν
− ws

∂ut
∂ν

) dσ = 0.

This is because (as we have shown above) the expression multiplying ηR is in
L1(∂Ω). Thus, we have shown for all s > 0 and all t > 0 that∫

∂Ω

ut
∂ws
∂ν
− ws

∂ut
∂ν

dσ = 0.(24)

Our next step is to let s and then t go to zero. We begin by showing that

lim
s→0+

∫
∂Ω

ut
∂ws
∂ν

dσ =
∫
∂Ω

ut
∂w

∂ν
dσ.(25)

We take advantage of the fact that for each t > 0, ut is smooth and hence bounded
in Ω. The function N(∇w) is in L1(∂Ω) and hence (25) follows easily from the
dominated convergence theorem. Next, we consider

lim
t→0+

∫
∂Ω

ws
∂ut
∂ν

dσ =
∫
∂Ω

ws
∂u

∂ν
dσ.(26)

This follows since we have ∇u ∈ Lp(∂Ω) for some p, 1 ≤ p < 2 and w satisfies (22).
The same estimates allow us to use the dominated convergence theorem to show

lim
s→0+

∫
∂Ω

ws
∂u

∂ν
dσ =

∫
D

gD
∂u

∂ν
dσ.(27)

The integral on the right-hand side of this equation is only over D since ∂u
∂ν = 0 on

N .
After these routine limits, we now come to the interesting part of the argument.

We claim that

lim
s→0+

∫
∂Ω

u
∂ws
∂ν

dσ = 0.(28)

This presents a challenge since (if say, p = 1) we have estimates for u in
L(n−1)/(n−2)(∂Ω), but we only have N(∇w) in Lp(∂Ω) for p ≤ 2.

Our argument relies on a technique from G. Verchota’s paper [25] which uses
the generalized Riesz transforms to express the integrand in (28) in terms of deriva-
tives of u and the boundary values of wi. These quantities are easily estimated as
in our first three limits.
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To proceed, we write out the integral over ∂Ω in the coordinates (x′, φ(x′)) and
the use the system that w1, . . . , wn satisfies to obtain∫

∂Ω

u
∂ws
∂ν

dσ =
∫

Rn−1
u(x′, φ(x′))(

n−1∑
i=1

φxi(x
′)
∂ws
∂xi

(x′, φ(x′))(29)

−∂ws
∂xn

(x′, φ(x′))) dx′

=
∫

Rn−1
u(x′, φ(x′))(

n−1∑
i=1

φxi(x
′)
∂wi,s
∂xn

(x′, φ(x′))(30)

+
∂wi,s
∂xi

(x′, φ(x′))) dx′(31)

= −
∫

Rn−1

n−1∑
i=1

∂

∂xi
u(x′, φ(x′))wi,s(x′, φ(x′)) dx′.

The boundary terms at infinity in the integration by parts vanish since we have
wi ∈ L(n−1)/(n−2)(∂Ω) ∩ L∞(∂Ω) and u ∈ Lp(n−1)/(n−1−p)(∂Ω). We omit the
details. Now, as above, we may use wi ∈ Lq(∂Ω), for all q with (n− 1)/(n− 2) ≤
q ≤ ∞ and that ∇u ∈ Lp(∂Ω), for some p, 1 ≤ p < 2 to conclude that

lim
s→0+

∫
∂Ω

wi,s(x′, φ(x′))
∂

∂xi
u(x′, φ(x′)) dx′ =

∫
R

wi(x′, φ(x′))
∂

∂xi
u(x′, φ(x′)) dx′.

Now we have the task of reversing the calculations in (31) to conclude that this last
integral is zero.

To do this, we first observe that, away from the crease, we have some additional
regularity of the solution u. This follows from the solution of the Neumann and
regularity problem as in Dahlberg and Kenig, [8]. In particular, using the Green’s
function for each of these problems as in [2, p. 33] (which is based on [8]), we can
show that if Br is a ball centered at a point in ∂Ω and B2r ∩ ∂Ω is contained in N
or in D, but does not meet both sets, then we have

sup
y∈Br(x)∩Ω

|u(y)| ≤ C
∫
B2r(x)∩∂Ω

N(u) dσ.(32)

Let ηε be a cutoff function which is one if dist (x,D) > 2ε, is zero when dist (x,D) <
ε and satisfies |∇ηε| ≤ C/ε. Also, let η̃R be a cutoff function which is one if
|x| < R, zero if |x| > 2R and satisfies |∇η̃R| ≤ C/R. Then since the integrand is in
L1(Rn−1),∫

Rn−1
wi(x′, φ(x′))

∂

∂xi
u(x′, φ(x′)) dx′

= lim
R→∞,ε→0+

∫
Rn−1

ηε(x′, φ(x′))η̃R(x′, φ(x′))wi(x′, φ(x′))
∂

∂xi
u(x′, φ(x′)) dx′

since ∇u ∈ Lp for some p, 1 ≤ p < 2 and wi satisfies (22). Note that we can assume
the cutoff functions vanish on D since the tangential derivatives of u are already
zero there. Now we consider the integral inside the limit with ε > 0 and integrate
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by parts to obtain∫
Rn−1

η̃R(x′, φ(x′))ηε(x′, φ(x′))wi(x′, φ(x′))
∂

∂xi
u(x′, φ(x′)) dx′

= −
∫

Rn−1
(η̃R(x′, φ(x′))ηε(x′, φ(x′))u(x′, φ(x′))

∂

∂xi
wi(x′, φ(x′))

+u(x′, φ(x′))wi(x′, φ(x′))
∂

∂xi
(η̃R(x′, φ(x′))ηε(x′, φ(x′))) dx′

where the boundary term at infinity vanishes because of our estimates on wi and
u. Since the estimate (32) implies u is bounded away from the crease and N(∇wi)
is in L1(∂Ω), we may undo the calculation in (31) above to show that

n−1∑
i=1

∫
Rn−1

∂

∂xi
wi(x′, φ(x′))u(x′, φ(x′))η̃R(x′, φ(x′))ηε(x′, φ(x′)) dσ

=
∫
∂Ω

w
∂u

∂ν
η̃Rηε dσ = 0.

Of course, this is because ∂w/∂ν = 0 on N and u = 0 on D. Thus, to finish, we
need to show that

lim
ε→0+

∫
N

|wiu
∂

∂xi
ηε| dσ = 0

lim
R→∞

∫
N

|wiu
∂

∂xi
η̃R| dσ = 0

We consider the limit involving ε first. Here, we use that u = 0 on D to prove a
Poincarè inequality: For some C > 0, we have∫

{x:dist (x,ζ)≤2ε}
|u(x)|p dσ(x) ≤ Cεp

∫
{x∈∂Ω:dist (x,ζ)≤Cε}

|∇u(x)|p dσ.

Finally, if we let ζε denote {x : dist (x, ζ) < Cε} then we have∫
N

|uwi
∂

∂xi
ηε| dσ ≤ lim

ε→0+
C

(∫
ζε

|∇u(x)|p dσ
)1/p(∫

ζε

|wi(x)|p
′
)1/p′

= 0.

This uses that ∇u is in Lp(∂Ω) and wi is in Lp
′
(∂Ω). The limit that R → ∞

vanishes because we have wi in L(n−1)/(n−2)(∂Ω) and u ∈ Lp(n−1)/(n−1−p)(∂Ω).
This completes the proof of the claim (28).

Combining (24), (25), (26), (27) and (28), we have that ∂u/∂ν is zero on ∂Ω.
Thus the uniqueness for the Neumann problem proved in [8] implies that u is zero.
This completes the proof of uniqueness for p in the range 1 ≤ p < 2.

4. Interpolation

Our last step, is to show existence of solutions for p in the range, 1 < p < 2.
This is done by interpolation. Only one or two details are needed.

Proposition 4.1. Let Ω, N and D be a creased domain. If fD is in Lp,1(D)
and fN ∈ Lp(N), then there exists a solution u to (1) which satisfies

‖N(∇u)‖Lp(∂Ω) ≤ C(‖fN‖Lp(∂Ω) + ‖fD‖Lp,1(∂Ω)).
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Proof. Thanks to the solvability of the Dirichlet problem with data f which
has ∇tanf ∈ Lp(∂Ω) [8, Theorem 3.8], we may assume that fD = 0. If f is in
Lp(N), 1 < p < 2, then we may extend f to all of ∂Ω by setting f = 0 on D. We
consider the function

f̃(x′) = f(x′, φ(x′))
√

1 + |∇φ(x′)|2.

According to the decomposition lemma in the monograph of Torchinsky, [24, p. 364],
we have for λ > 0 that we can write

f̃ = fλ + fλ

where

‖fλ‖H1(Rn−1) ≤ Cλ1−p‖f‖pp and ‖fλ‖L2(Rn−1) ≤ Cλ2−p.

Thus we may use uniqueness in the L2-mixed problem and the observation about
L2-solutions in Theorem 2.5 to show that

u = uλ + uλ

where u is the solution of (1) with data fN = f |N and fD = 0 and uλ has Neumann
data fN (x′, φ(x′)) = (1 + |∇φ(x′)|2)−1/2fλ(x′) and fD = 0. The function uλ solves
a mixed problem with data involving fλ.

Next, from our estimates for H1 and L2, we obtain the weak-type estimate,

σ({x : N(∇u) > λ}) ≤ σ({N(∇uλ) > λ/2}) + σ({N(∇uλ) > λ/2}) ≤ C

λp
‖f‖pp.

This weak type estimate and the Marcinkiewicz interpolation theorem (see [21,
p. 272]) give the strong-type inequality. Thus we have that if f ∈ L2 ∩ Lp, there is
a solution to (1) which satisfies

‖N(∇u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω).

To remove the restriction that f is in L2∩Lp, involves a routine limiting argument.

Finally, we summarize what we have done. The result of this theorem is the
main result of this paper.

Theorem 4.2. Suppose 1 < p < 2 and n ≥ 3. Let Ω, N and D be a creased
domain.

If fN is in Lp(N) and fD is in Lp,1(D), then there exists a unique solution to
the mixed problem (1) which satisfies

‖N(∇u)‖Lp(∂Ω) ≤ C(‖fN‖Lp(N) + ‖fD‖Lp,1(D)).

If fN is in H1
at(N) and fD is in H1,1

at (D), then there exists a unique solution
to the mixed problem (1) which satisfies

‖N(∇u)‖L1(∂Ω) ≤ C(‖fN‖H1
at(N) + ‖fD‖H1,1

at (D)).

In each case, the uniqueness assertion is in the class of solutions which have
N(∇u) in Lp(∂Ω). When p = 2 and n = 3, we only have uniqueness modulo
constants.
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