
Uniqueness in the inverse conductivity problem for
conductivites with 3/2 derivatives in Lp, p > 2n

Russell M. Brown∗

Department of Mathematics
University of Kentucky
Lexington, Kentucky

Rodolfo H. Torres
Department of Mathematics

University of Kansas
Lawrence, Kansas

The purpose of this note is to establish a small extension of a result of Panchenko,
Päivärinta and Uhlmann [14]. These authors recently showed that we have uniqueness
in the inverse conductivity problem for conductivities which are in the class C3/2 in
three dimensions and higher. This built on earlier work of one the authors, Brown [3].
In this note, we relax this condition to conductivities which have 3/2 derivatives in Lp

for p > 2n. We will obtain an end-point result with p = 2n for a related problem for
Schrödinger equations. However, the problem of defining the trace on the boundary
prevents us from obtaining uniqueness for the inverse conductivity problem at the
end-point. Our results are in Rn with n ≥ 3. Better results are available in R2 in
the work of Brown and Uhlmann [4].

The inverse conductivity problem is the problem of determining the coefficient γ
in the elliptic operator divγ∇ from information about solutions to this operator at the
boundary. This problem was posed in the mathematics community by A.P. Calderón
[6]. As has been known for some time [8, 12, 16], the key technique in establishing such
uniqueness results is the construction of solutions which are asymptotic to harmonic
exponentials at infinity. To construct these solutions, we use the standard relationship
between an elliptic operator of the form divγ∇ and a Schrödinger operator. Of course,
the coefficient γ is a scalar valued function. The Schrödinger operators we consider
are of the form

∆− q

where the potential q = ∆
√
γ/
√
γ may be a distribution if γ is not smooth. We look

for solutions v of the Schrödinger equation ∆v− qv = 0 which are asymptotic to ex·ζ

where ζ is in Cn and satisfies ζ · ζ =
∑
j ζ

2
j = 0. A simple calculation shows that if

we look for solutions which are of the form

v(x, ζ) = ex·ζ(1 + ψ(x, ζ))
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then the function ψ must satisfy

∆ψ + 2ζ · ∇ψ − qψ = q.

And, at least formally, the solution ψ can be constructed as the series

ψ(x, ζ) =
∞∑
j=0

(Gζmq)
jGζ(q). (1)

In this expression, mq is the multiplication operator given by q

mq(φ) = qφ

and Gζ is the inverse of ∆ + 2ζ · ∇ defined by

̂Gζ(f)(ξ) =
f̂(ξ)

−|ξ|2 + 2iζ · ξ
.

Since the symbol −|ξ|2 + 2iζ · ξ = 0 vanishes to first order on a sphere of codimension
2, the right-hand side of the definition of Gζ will be a tempered distribution if f is

in the Schwartz class. The Fourier transform is normalized by f̂(ξ) =
∫
f(x)e−ix·ξ dx.

To make sense of the infinite sum (1), we need to make estimates for the operator
Gζ and the multiplication operator mq acting on Banach spaces. The contribution
of this note beyond previous work is to provide an improved estimate for mq. To be
precise, we will show that if q is in the Sobolev space W−s,n/s, then the multiplication
operator mq (which is defined, say, as a map from S to S ′) also maps W s,2 to W−s,2.
The case s = 1 is a consequence of such familiar results as the product rule and the
Sobolev embedding theorem. To see this, suppose u, v ∈ W 1,2, then we have that
uv lies not only in W 1,1, but we also have ∇(uv) ∈ Ln/(n−1). This follows from the
product rule and Sobolev embedding: u∇v + v∇u is in Ln/(n−1) since ∇v,∇u ∈ L2

and u, v ∈ L2n/(n−2). Thus, we have

|〈 ∂p
∂xj

, uv〉| =
∣∣∣∣∣
∫
p
∂uv

∂xj
dx

∣∣∣∣∣ ≤ C‖p‖Ln‖u‖W 1,2‖v‖W 1,2

from which it follows that the map u→ u ∂p
∂xj

maps W 1,2 to the dual space W−1,2 when

p is in Ln. Here, we use 〈·, ·〉 to denote the bilinear pairing between distributions and
functions.

In this paper, we contribute nothing to the analysis of Gζ . The estimates used are
from the paper of Sylvester and Uhlmannn [16]. It is possible that some improvement
can be made here. We expect that one should be able to prove uniqueness for conduc-
tivities which have 3/2 derivatives in Lp with p > 2n/3. However, the straightforward
generalization of the argument presented below would require that f → ∇Gζf map
Lp functions which are compactly supported to functions which are locally in Lr with
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p and r satisfying 1/p − 1/r = 1/n. Many such estimates fail, see [2] for further
discussion.

Finally, let us mention that one of us (Brown) conjectures that uniqueness should
hold when the conductivity γ has one derivative in Lp with p > n. The methods
presented here do not come close to addressing this conjecture.

We begin the formal development by stating a theorem on products of functions
in Sobolev spaces W s,p(Rn). There does not seem to be a standard notation for
these spaces. For s ∈ R and 1 < p < ∞, we will use W s,p to denote the space
of distributions (or functions, if s ≥ 0) which are defined by the Bessel potential
operator. Thus u ∈ W s,p if and only if J−su ∈ Lp where Js is the operator given by

f → ((1 + |ξ|2)−s/2f̂(ξ))̌.

We recall that if s = 0 and 1 < p < ∞, then this space coincides with Lp. If s is a
positive integer and 1 < p < ∞, then the space W s,p is precisely the functions with
s derivatives in Lp. For 1 < p <∞, this space is also known as the Triebel-Lizorckin
space F s,p

2 . We refer to the monograph of Triebel [18] for properties of these spaces.

Theorem 1 Let u ∈ W s,p and let v ∈ W s,q, with 1 < p, q < ∞, 1/p + 1/q ≤ 1, and
0 ≤ s < nmin(1/p, 1/q). Then uv ∈ W s,r∗ where 1/r∗ = 1/p+ 1/q − s/n.

This result is well-known, see the monograph of Runst and Sickel [15, p. 177].
This theorem immediately implies the following Corollary.

Corollary 2 If q ∈ W−1/2,2n with n ≥ 3, then the operator mq given by mq(u) = qu
maps W 1/2,2 → W−1/2,2 and satisfies

‖mq(u)‖W−1/2,2 ≤ C‖u‖W 1/2,2‖q‖W−1/2,2n .

Proof. To be precise, mq(u) is defined by 〈mq(u), v〉 = 〈q, uv〉. Using the duality
between W s,n/(n−s) and W−s,n/s which is valid (at least) for 1 < n/s < ∞, and
Theorem 1 we conclude that

|〈q, vu〉| ≤ C‖q‖W−1/2,2n‖uv‖W 1/2,2n/(2n−1) ≤ C‖q‖W−1/2,2n‖u‖W 1/2,2‖v‖W 1/2,2 .

This inequality implies the Corollary.

Now, we recall standard estimates for the operator Gζ . In order to simplify what
follows, we will not use the weighted estimates of Sylvester and Uhlmann, but a sim-
ple consequence of these estimates. This will allow us to avoid mention of weighted
Sobolev spaces. A weighted version of the previous Corollary is undoubtedly true,
but it might be a chore to chase down the proof. We will restrict our attention to
compactly supported potentials. This restriction is acceptable for our application
to the inverse conductivity problem. However, there may be interest in Schrödinger
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operators where the potential is not compactly supported. If X is a space of distri-
butions, we will fix R0 > 1 and let Xc denote the subspace of X which is supported
in B̄R0(0). Our notation obscures the dependence of the space Xc on R0, however
we will give the dependence of the constants in our estimates on R0. Also, we are
using Bs(x) to denote the ball of radius s and center x. The following result is due to
Sylvester and Uhlmann [16]. The spaces we use are similar to those used by Agmon
and Hörmander (see [10, p. 227]), except that we require smoothness of order s. We
fix η an infinitely differentiable function which is supported in a ball of radius 1 and
is identically one in a neighborhood of B̄1/2(0) and set ηR(x) = η(x/R). With this
function η, we define the space B∗s to be the space of distributions for which the norm

‖f‖B∗s = sup
R>1

R−1/2‖ηRf‖W s,2

is finite. We leave it as an exercise to see that different choices of η, subject to the
above conditions, give equivalent norms on B∗s .

Theorem 3 If n ≥ 3, |ζ| ≥ 1, ζ · ζ = 0 and 0 ≤ s ≤ 1, then

‖Gζf‖B∗
1/2
≤ CR

1/2
0

|ζ|s
‖f‖

W
−1/2+s,2
c

.

Proof. From the main estimate in [16] (see also [3] for the gradient estimate), we
find that∫

Rn
(1 + |x|2)−1/2(|Gζf(x)|2|ζ|2 + |∇Gζf(x)|2) dx ≤ C

∫
Rn

(1 + |x|2)1/2|f(x)|2 dx. (2)

On the ball BR(0), (with R > 1) the weight on the left-hand side of (2) is bounded
below by 2R and the weight on the right-hand side is bounded above by 2R. This
gives the estimate

R−1/2‖Gζf‖L2(BR(0)) ≤
C

|ζ|
R

1/2
0 ‖f‖L2

c
. (3)

Also, since Gζ and ∇ commute, we obtain that for f compactly supported in B2R0

R−1/2‖∇Gζf‖L2(BR(0)) ≤
C

|ζ|
R

1/2
0 ‖∇f‖L2

c
. (4)

We let η be a smooth function as in the definition of the B∗. -spaces. The inequalities
(3) and (4) together imply that for s = 0, 1, we have

R−1/2‖ηRGζη2R0f‖W s,2 ≤ C

|ζ|
R

1/2
0 ‖f‖W s,2 . (5)

Complex interpolation implies that the inequality (5) continues to hold for 0 < s < 1.
Finally, if we use the estimate for the gradient in (2), it is not hard to see that for
R,R0 > 1, we have

R−1/2‖ηRGζη2R0f‖W s+1,2 ≤ CR
1/2
0 ‖f‖W s,2 (6)
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for s = 0. By duality (and interchanging R and 2R0), we obtain (6) with s = −1
also. Then, interpolating gives (6) with s = −1/2. Interpolating between (6) with
s = −1/2 and (5) with s = 1/2, and taking the supremum in R gives the conclusion
of the theorem. Notice that if f is in W s,2

c and η = 1 in a neighborhood of B̄1/2(0),
then η2R0f = f , hence the estimates for Gζ on W s,2

c follow from estimates for the
map f → Gζ(η2R0f).

Now, we consider a potential q in W−1/2,2n
c and consider the equation

(∆ + 2ζ · ∇)ψ − qψ = f. (7)

In what follows, we will use Gζ,q to denote the inverse of the operator ∆ + 2ζ · ∇− q.
We prove the existence of this map by showing that it maps from W−1/2,2

c to the space
B∗1/2.

Theorem 4 Let q ∈ W−1/2,2n
c , then there exists C = C0(q) so that for |ζ| ≥ C0(q),

we may find a unique solution, ψ = Gζ,qf , to (7) in B∗1/2. This map satisfies

‖Gζ,qf‖B∗
1/2
≤ A‖f‖

W
−1/2,2
c

.

The constant A = A(R0) in the previous estimate is independent of q and ζ.
Furthermore, we have

lim
|ζ|→∞

‖Gζ,qf‖B∗
1/2

= 0.

To carry out the proof of the Theorem, we begin with the case of smooth potentials.
The key point is that smooth potentials are dense in W−1/2,2n and that for smooth
potentials, the norm of the inverse does not depend on the size of q. The size of q
only enters in determining how large ζ must be.

Lemma 5 Suppose q ∈ C∞c (Rn) and that supp q ⊂ BR0(0). Then there is a constant
C0 = C0(q) so that for |ζ| > C0(q) and 0 ≤ s ≤ 1, Gζ,q satisfies

‖Gζ,qf‖B∗
1/2
≤ A

|ζ|s
‖f‖

W
−1/2+s,2
c

. (8)

The constant A = A(R0) is independent of ζ and q.

Proof. We write

Gζ,q(f) =
∞∑
j=0

(Gζmq)
jGζf.

According to Theorem 3, we have

‖Gζf‖B∗
1/2
≤ CR

1/2
0

|ζ|s
‖f‖W−1/2+s,2

5



for 0 ≤ s ≤ 1. Because, q is smooth and η = 1 in a neighborhood of B1/2(0), it is
clear that

‖mqf‖W 1/2,2
c
≤ C(q)‖η2R0f‖W 1/2,2 ≤ C(q)R

1/2
0 ‖f‖B∗1/2 .

Using this and the estimate in Theorem 3 with s = 1 , we obtain

‖Gζmqf‖B∗
1/2
≤ C(q)R0

|ζ|
‖f‖B∗

1/2
.

Now, if we require |ζ| to be sufficiently large, the norm of Gζ ◦ mq on B∗1/2 will be

bounded by 1/2 and hence the norm of
∑
j(Gζ ◦mq)

j as an operator on B∗1/2 will be
at most 2. This proves the Lemma.

Proof of Theorem 4. We suppose now that q is in W−1/2,2n and is supported, say, in
BR0/2(0). We let ε > 0, be a number to be determined later. We can write q = qs+ qr
where the smooth part of q, qs, is in C∞0 (Rn) and is supported in BR0(0) and the
remainder, the rough part, qr is also supported in BR0(0) and satisfies ‖qr‖W−1/2,2n < ε.
We suppose f ∈ B∗1/2 and observe that with η as in the definition of B∗1/2, we have
that mqr(f) = mqr(η2R0f) because η2R0 = 1 on the support of qr. We use the estimate
for Gζ,qs on W−1/2,2

c in Lemma 5 and the estimate for mqr in Corollary 2 to obtain

‖Gζ,qsmqrf‖B∗1/2 ≤ A‖mqrf‖W−1/2,2
c

≤ CA‖qr‖W 2n,−1/2‖η2R0f‖W 1/2,2 (9)

≤ CAε
√

2R0‖f‖B∗
1/2
.

We search for u which satisfies ∆u+ 2ζ · ∇u− qsu− qru = f and if we let Gζ,qs be an
inverse to ∆u+ 2ζ · ∇ − qs, then we can write

Gζ,qf =
∞∑
j=0

(Gζ,qsmqr)
jGζ,qsf. (10)

If we choose ε so that CAε
√

2R0 = 1/2, then the series in (10) will converge thanks to
the estimate in (9). According to Lemma 5, the maps Gζ,qs will exist for |ζ| sufficiently
large depending on qs and hence on q.

To obtain uniqueness, we suppose that u ∈ B∗1/2 is a distribution solution of
∆u + 2ζ · ∇u − qu = 0 in Rn. Note that u must have half of a derivative for
the product qu to be defined. Again, we split q = qr + qs and by Proposition 2.1
in Sylvester and Uhlmann [16], see also Hörmander [9, Theorem 7.1.27], there is a
unique solution of ∆u+ 2ζ · ∇u− qsu = qru, namely u = Gζ,qs(qru). By the estimate
of Lemma 5, we obtain

‖u‖B∗
1/2
≤ A‖qr‖W−1/2,2n‖u‖B∗

1/2
,

at least for |ζ| sufficiently large. Since the norm of qr may be arbitrarily small, it
follows that we have u = 0 for ζ large.
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Finally, we observe that if we fix f ∈ W−1/2,2, then we have

lim
|ζ|→∞

‖ηRGζ,qf‖B∗
1/2

= 0.

To see this, we let ε > 0 and split f = fs + fr with ‖fr‖W−1/2,2 < ε. Let qs and qr be
the splitting used above in constructing Gζ,q. Using the representation for Gζ,q, (10),
and the estimate for Gζ,qs , (8), we have

‖Gζ,qfs‖B∗
1/2
≤ C(fs, q)/|ζ|. (11)

While the estimate of this theorem, which we have already proved, shows that for |ζ|
sufficiently large, we have

‖Gζ,qfr‖B∗
1/2
≤ Aε. (12)

Together these observations imply that lim sup|ζ|→∞ ‖Gζ,qf‖B∗
1/2

< Aε and since ε is

an arbitrary positive number, the limit is zero.

Corollary 6 If q ∈ W−1/2,2n
c , then there is a constant C0(q) so that if ζ satisfies

|ζ| > C0(q) and ζ · ζ = 0, we can construct solutions v of ∆v − qv = 0 of the form
v(x, ζ) = ex·ζ(1 + ψ(x, ζ)) with

lim
|ζ|→∞

‖ψ‖B∗
1/2

= 0

Furthermore, ψ is the unique function in B∗1/2 and so that v = ex·ζ(1+ψ(x, ζ)) satisfies
∆v − qv = 0.

Proof. We construct ψ = ψ(·, ζ) = Gζ,q(q) where Gζ,q was constructed in Theorem
4. The existence and the limiting behavior of ψ follow from Theorem 4. It is a simple
calculation to see that the ψ and then the v constructed in this way have the desired
properties.

If we have two such ψ, call them ψ1 and ψ2, then their difference is a solution of
the homogeneous equation

∆(ψ1 − ψ2) + 2ζ · ∇(ψ1 − ψ2)− q(ψ1 − ψ2) = 0.

According to Theorem 4, 0 is the only solution of this equation in B∗1/2.

In what follows, we will also need function spaces on domains. For s ≥ 0, we
define the space W s,p(Ω) as the image of the space W s,p(Rn) under the map u→ u|Ω.
Thus elements in the space W s,p(Ω) automatically have extensions to all of Rn. We
also recall that the space W s,p

0 (Ω) denotes the closure of C∞0 (Ω) in the space W s,p(Ω).
Next, we recall the definition of the Dirichlet to Neumann map, which we denote

Λγ, for the elliptic operator divγ∇. We suppose that we have a bounded domain
with Lipschitz boundary. We define the space W 1/2,2(∂Ω) as the quotient space
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W 1,2(Ω)/W 1,2
0 (Ω). It is well-known that this space can be identified with the Besov

space B
1/2,2
2 on the boundary. The coefficient γ in the operator divγ∇ will lie in

L∞(Ω) and satisfy
δ ≤ γ ≤ 1/δ (13)

for some δ > 0. If f is in W 1,2(Ω), we can solve the Dirichlet problem{
divγ∇u = 0 in Ω
u = f on ∂Ω.

This solution u is, of course, independent of the particular representative f of an
equivalence class in W 1/2,2(∂Ω). Given the solution u of the Dirichlet problem with
data f , we may define a map Λγ : W 1/2,2(∂Ω)→ W−1/2,2(∂Ω) by

Λγ(f)(g) =
∫

Ω
γ∇u · ∇g dx.

Since u is a solution, the expression on the right does not change if we add a function
in W 1,2

0 (Ω) to g. Thus, we may define Λγ(f) as an element of the dual of W 1/2,2(∂Ω).
Now, we quote the following result on determining the coefficient at the boundary.

This will be an important step in connecting the Dirichlet to Neumann map in Ω to a
problem in all of space. In our argument below, we will work with two conductivities
γ1 and γ2 with

√
γj in W 3/2,2n+ε(Ω) and try to extend them to preserve smoothness

and so that the extensions are equal in the complement of Ω. The next two results
explain when this can be done.

Proposition 7 Assume that ∂Ω is Lipschitz and assume that for some ε > 0, γ1 and
γ2 are in W 3/2,2n+ε and that Λγ1 = Λγ2. Then we have γ1 = γ2 and ∇γ1 = ∇γ2 on
∂Ω.

Proof. The hypothesis that γj is in W 3/2,2n+ε(Ω) implies, by the Sobolev embedding
theorem, that there is an ε′ > 0 so that ∇γj is in C1+ε′(Ω̄) for j = 1, 2. It has been
proven many times that the boundary values of a conductivity and its derivatives
are determined by the Dirichlet to Neumann map. The result stated here for C1+ε′

conductivities may be found in Alessandrini [1].

Corollary 8 If, for some ε > 0,
√
γ1 and

√
γ2 are in W 3/2,2n+ε(Ω), and Λγ1 = Λγ2,

then we may extend γ1 and γ2 to all of Rn so that
√
γj − 1 ∈ W 3/2,2n+ε and γ1 = γ2

in Rn \ Ω.

Proof. According to the previous proposition, γ1 = γ2 on ∂Ω and also ∇γ1 = ∇γ2 on
∂Ω. By our definition of the space W s,p(Ω), it is immediate that there are extensions
of
√
γ1 and

√
γ2 to all of Rn. Using smooth cutoff functions, we can arrange that the
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extensions (which we still denote by
√
γj) have

√
γj − 1 in W 3/2,2n+ε

c (Rn) for j = 1, 2.
We claim that the function

β =

{ √
γ2 −

√
γ1, in Ω,

0, in Ω̄c,

lies in W 3/2,2n+ε(Rn). This will suffice to prove our Corollary since
√
γ1 and

√
γ1 + β

provide the two extensions which agree in the complement of Ω.
Thus, we must establish the claim. Of course, this depends on the hypothesis that

γ1 and γ2 agree to first order on the boundary of Ω. In fact, this claim is a consequence
of Corollary 2.11 in Triebel’s monograph [18, p. 210]. Alert readers will note that
this monograph assumes that the domain is smooth. However, that assumption is
not needed when p > 1. The key step is to show that the characteristic function of Ω
is multiplier on W s,p(Rn) when −1 +1/p < s < 1/p. The proof proceeds by changing
variables to flatten the boundary. As the discussion on p. 172 of Triebel indicates,
when p > 1, the needed results for Lipschitz change of variables can be proven for
s = 0, 1 using the chain rule (for s = 1) and change of variables. Then, we interpolate
to obtain results for 0 < s < 1.

The next proposition uses the equality of the Dirichlet to Neumann maps to
deduce the equality of expressions involving the solutions vj constructed above. In
this proposition and below, we will use a Schrödinger operator with a potential qj
which is defined by ∆

√
γj/
√
γj. Since, in general, the coefficient γj does not have two

derivatives, we define the Laplacian in a weak sense. To be precise, we will define the
pairing between qj and a function φ with one derivative by

〈qj, φ〉 = −
∫

Rn
∇√γj · ∇

φ
√
γj
dx. (14)

Proposition 9 Suppose n ≥ 3. Let γ1 and γ2 satisfy (13) and suppose that ∇√γj
is in Lnc . Suppose further that γ1 = γ2 outside Ω and that Λγ1 = Λγ2. We let
qj = ∆

√
γj/
√
γj. If for j = 1, 2, vj is a solution of ∆vj − qjvj = 0 which lies in

W 1,2
loc (Rn), then

〈q1, v1v2〉 = 〈q2, v1v2〉.

Proof. We first observe that the multiplication operator given by ∆
√
γj/
√
γ
j

maps

W 1,2(Rn) toW−1,2(Rn). To see this, we use the definition of the distribution ∆
√
γj/
√
γj

in (14) to obtain

〈
∆
√
γj

√
γj

, uv〉 = −
∫

Rn
∇√γj · ∇

uv
√
γ
j

dx. (15)

The product rule, Hölder’s inequality, and then the Sobolev inequality (which requires
n ≥ 3), imply that∣∣∣∣∣

∫
∇√γj · ∇

uv
√
γj
dx

∣∣∣∣∣ ≤ ‖u‖W 1,2BR0
‖v‖W 1,2BR0

(‖∇ log
√
γj‖Ln + ‖∇ log

√
γj‖2

Ln).
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Thus the expressions in (15) are defined, at least when n ≥ 3.
Now, we turn to the proof of the equality of the theorem. First, we consider the

integral outside of Ω. Since we have
√
γ1 =

√
γ2 outside Ω, it follows immediately

that ∫
Rn\Ω

∇√γ1 · ∇
v1v2√
γ1

dx =
∫

Rn\Ω
∇√γ2 · ∇

v1v2√
γ2

dx. (16)

To study the integral inside Ω, we observe that if we define uj = vj/
√
γj, then we

have that divγj∇uj = 0. This follows from a well-known calculation which we omit.
Next, we claim that∫

Ω
∇√γ1 · ∇(

1
√
γ1

v1v2)−∇v1 · ∇v2 dx = −Λγ1(u1)(u2). (17)

Now, if we interchange the indices 1 and 2 in (17), subtract the result from (17), use
that Λγj(f)(g) = Λγj(g)(f), and then our assumption that Λγ1 = Λγ2 we obtain that∫

Ω
∇√γ1 · ∇

v1v2√
γ1

dx =
∫

Ω
∇√γ2 · ∇

v1v2√
γ2

dx. (18)

If we add (16) and (18), we obtain the conclusion of the theorem.
Thus, we turn to the proof of (17) and for this we will need an additional function

ũ2 = v2/
√
γ1. By the definitions of u1 and ũ2 and the product rule, we obtain∫

Ω
∇√γ1 · ∇(

1
√
γ1

v1v2)−∇v1 · ∇v2 dx

=
∫

Ω
∇√γ1 · ∇(

√
γ1u1ũ2)− u1∇

√
γ1 · ∇(

√
γ1ũ2)

−√γ1∇u1 · (ũ2∇
√
γ1)− γ1∇u1 · ∇ũ2 dx

= −Λγ1(u1)(u2).

In the last equality, we use that u2 − ũ2 is in W 1,2
0 (Ω) and hence they restrict to

the same element in W 1/2,2(∂Ω). This is a consequence of Lemma 10 below. This
completes the proof of (17) and hence the Proposition.

Lemma 10 Assume ∂Ω is Lipschitz and that Ω is bounded. If β is C(Ω̄) ∩W 1,n(Ω)
and β(x) = 0 for x ∈ ∂Ω, then the map u→ βu maps W 1,2(Ω) to W 1,2

0 (Ω).

Proof. We let ε > 0 and construct a cutoff function ηε(x) where ηε(x) = 1 if δ(x) > 2ε
and ηε(x) = 0 if δ(x) < ε. Here, we are using δ(x) to denote the distance from x
to ∂Ω. This function may be constructed to satisfy |∇ηε| ≤ C/ε. We consider
∇(ηεβ) − ∇β = (ηε − 1)∇β + β∇(ηε − 1). By the dominated convergence theorem,
we have limε→0+

∫
Ω |∇β|n|(1− ηε)|n = 0. While Hardy’s inequality (see [7, p. 28], for

example) implies that ∫
Ω
|β|n|∇ηε|n dx ≤

∫
{x:δ(x)<Cε}

|∇β|n dx.
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Hence, we can approximate β in the norm of W 1,n(Ω) by βηε. Furthermore, by reg-
ularizing, we can find a sequence of functions {βj} which are infinitely differentiable,
converge to β in W 1,n

0 (Ω), the sequence is bounded in L∞(Ω) and converges point-
wise to β. Now, we claim that βju converges to βu in W 1,2(Ω). The convergence
of βju to βu in L2 follows from the dominated convergence theorem. Now consider
∇(βju) = u∇βj+βj∇u. The convergence of βj∇u to β∇u follows from the dominated
convergence theorem. We have

‖u(∇βj −∇β)‖L2(Ω) ≤ ‖∇βj −∇β‖Ln(Ω)‖u‖L2n/(n−2)(Ω). (19)

From the inequality (19), we see that the convergence of ∇βj in Ln implies the
convergence of u∇βj to u∇β in L2. We have established that ‖∇(βju)−∇(βu)‖Ln(Ω)

goes to zero as j → ∞. The term ‖u‖L2n/(n−2)(Ω) is finite because of the Sobolev
embedding theorem. Hence, the right-hand side of (19) tends to zero. Because the
sequence of functions βju tend to βu inW 1,2(Ω) we can conclude that βu is inW 1,2

0 (Ω).

Finally, we give the proof of our main theorem. Given the above, the proof of the
main result follows familiar lines.

Theorem 11 Suppose n ≥ 3, ∂Ω is Lipschitz, γj ∈ W 3/2,2n+ε(Ω) for some ε > 0 and
that Λγ1 = Λγ2, then we have that γ1 = γ2.

Proof. Because of the equality of the Dirichlet to Neumann maps, we may use the
result of Corollary 8 to extend γ1 and γ2 to all of Rn so that γ1 = γ2 in Rn \Ω. Thus,
according to Proposition 9 we have

〈(q1 − q2), v1v2〉 = 0 (20)

where qj are the potentials, ∆
√
γj/
√
γj as above and vj are solutions of ∆vj−qjvj = 0.

Now, we fix ξ ∈ Rn, let R > 0 be large and construct ζ1 and ζ2 in Cn satisfying

ζj · ζj = 0, j = 1, 2 (21)

ζ1 + ζ2 = −iξ, j = 1, 2 (22)

|ζj| > R, j = 1, 2. (23)

We recall the standard construction of ζj. Choose e1 and e2 unit vectors in Rn and so

that e1, e2 and ξ are mutually orthogonal and then put ζ1 = −Re1−ie2

√
R2 − |ξ|2/4−

iξ/2 and ζ2 = Re1 + ie2

√
R2 − |ξ|2/4− iξ/2. We construct the solutions vj of ∆vj −

qjvj = 0 corresponding to ζj as given by Corollary 6. Note that the solutions given by
this Corollary must have 3/2 derivatives L2

loc and thus they satisfy the hypotheses of

Proposition 9. To see this, observe that the right-hand side of ∆v = qv lies W
−1/2,2
loc

11



and thus by elliptic regularity, v has two more derivatives. We substitute ex·ζj(1+ψj)
for vj in (20) and obtain

0 = 〈q1 − q2, e
−ix·ξ(1 + ψ1 + ψ2 + ψ1ψ2)〉.

Because the functions ψj tend to zero in B∗1/2 as R → ∞, passing to the limit in
the previous equation gives q̂1 = q̂2. Here, we must use Theorem 1 and our estimate
for ψ1, ψ2 in B∗1/2 to conclude that the product ψ1ψ2 goes to zero in W

1/2,2n/(2n−1)
loc .

Hence, it follows that ∆
√
γ1/
√
γ1 = ∆

√
γ2/
√
γ2. As in [3, p. 1056], this implies that

log(γ1/γ2) solves div
√
γ1γ2∇ log(γ1/γ2) = 0 and is compactly supported and hence

vanishes by the weak maximum principle.

We close with several questions motivated by the above work.
1. Can we obtain uniqueness in the inverse conductivity problem at the endpoint

p = 2n? The above argument requires p > 2n in order to carry out the extension in
Corollary 8.

2. Can we lower the Lp-space from p = 2n to p = 2n/3 in the uniqueness result
for conductivities with 3/2 derivatives?

3. Can we lower the smoothness index to 1 and obtain a uniqueness result?
4. The result for uniqueness at the boundary in Proposition 7 that we quote from

Alessandrini [1] does not seem sharp. There is a boundary uniqueness result for the
gradient of the conductivity which requires that the coefficient be continuously dif-
ferentiable in the work of Sylvester and Uhlmann [17], however the domain must be
smooth. The work of Brown [5] gives a way of reconstructing the boundary values for
continuous (and some discontinuous) conductivities in Lipschitz domains. However,
this work does not discuss the gradient of the conductivity. The work Tanuma and
Nakamura [13] and Kang and Yun [11] gives boundary identifiability of the gradient
of a C1+ε conductivity in a C2+ε domain. Results of Nachman [12] give boundary
identifiability for the gradient of C1,1 conductivities in domains with C1,1 boundaries.
A reasonable conjecture is that we can determine the gradient of continuously differ-
entiable conductivities at the boundary in a Lipschitz domain. This result does not
seem to be in the literature.
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