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Abstract:We study the Stokes operatorA in a three-dimensional Lipschitz domain


. Our main result asserts that the domain ofA is contained inW

1;p

0

(
)\W

3=2;2

(
)

for some p > 3. Certain L

1

-estimates are also established. Our results may be

used to improve the regularity of strong solutions of Navier-Stokes equations in

nonsmooth domains. In the appendix we provide a simple proof of area integral

estimates for solutions of Stokes equations.

Introduction

In a recent interesting paper, Deuring and von Wahl [DW] consider strong solu-

tions of the nonstationary Navier{Stokes equations in 
� (0; T ):

8

<

:

@u

@t

= �u� (u � r)u�r� + f;

div u = 0;

with the initial-Dirichlet condition

(

u(X; t) = 0 for (X; t) 2 @
� (0; T );

u(X; 0) = u

0

(X) X 2 
;

where 
 is a bounded Lipschitz domain in R

3

. Based on the functional analytical

approach of Fujita and Kato [FK] and the Rellich estimates of Shen [S1], they show

that, if u

0

2 D(A

1=4+"

) for some " 2 (0; 1=2) and f is bounded and locally H�older

continuous, then a solution (u; �) exists for some T > 0 and

u 2 C((0; T ];D(A)) \ C([0; T ];D(A

1

4

+"

))

where A = �P� denotes the Stokes operator.

The purpose of this note is to describe D(A), the domain of A, in terms of

Sobolev's spaces. In the case of smooth domains, it is well known that

D(A) =W

2;2

(
) \W

1;2

0

(
) \ L

2

�

(
)

where L

2

�

(
) denotes the space of solenoidal functions in L

2

(
) (e.g., see [CF]). One

can not expect such results in Lipschitz domains, as the W

2;2

{estimate in general

fails in nonsmooth domains. Our main results in this paper assert that

(0.1) D(A) �W

1;p

0

(
) \W

3=2;2

(
)

for some p = p(
) > 3 (Theorem 2.17). In particular, it follows from the Sobolev's

imbedding that for every t 2 (0; T ], u(t) 2 C

�

(
) for some � = �(
) > 0, i.e.,

1
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the strong solution of the Navier-Stokes equations is H�older continuous up to the

boundary as a function of X. We also obtain the following L

1

estimates:

(0.2)

kuk

L

1

(
)

� Ckruk

1=2

L

2

(
)

kAuk

1=2

L

2

(
)

;

kuk

L

1

(
)

� Ckuk

1=4

L

2

(
)

kAuk

3=4

L

2

(
)

for u 2 D(A). To establish (0.2), we use the reverse H�older inequality, (0.1) and

some localization techniques. See Theorem 3.1 and Corollary 3.2. Estimates like

(0.2) are very useful in the study of Navier-Stokes equations. See [CF] and [H] in

the case of smooth domains.

To prove (0.1), we shall study the Dirichlet problem for the Stokes equations

with a forcing term, and interpolate between the L

2

estimates in [FKV] and the

H�older estimates in [S2]. The following area integral estimate:

Z




jru(X)j

2

dist(X;@
)dX � C

Z

@


juj

2

d�

for solutions of Stokes equations �u = r�, divu = 0 in 
, plays an important

role. This estimate is due to E. Fabes, C. Kenig and G. Verchota, but no proof

has appeared in the literature. In the appendix of this paper, which is due to

Z. Shen, we will provide a simple proof of the area integral estimates for solutions

of Stokes equations. The proof given here is based on the idea of a recent paper

by B. Dahlberg, C. Kenig, J. Pipher, and G. Verchota [DKPV] for higher order

equations and systems, together with some observations on the pressure term �.

Finally, the second author would like to thank C. Kenig for many helpful con-

versations.

1. Notation and De�nitions

In this section we collect the de�nitions for Lipschitz domains, the nontangential

maximal function, the Sobolev and Besov spaces we will use, and the Stokes oper-

ator. We shall also recall a few elementary facts regarding complex interpolation.

Lipschitz Domains. Let 
 be a bounded, open, connected set in R

n

. We say that


 is a Lipschitz domain if for each P 2 @
, there exists a coordinate system (x

0

; x

n

),

which is isometric to the usual coordinates, and a Lipschitz function  : R

n�1

! R,

a radius r > 0 so that

B(P; 2r) \ 
 = f(x

0

; x

n

) 2 R

n

: x

n

>  (x

0

)g \B(P; 2r);

B(P; 2r) \ @
 = f(x

0

; x

n

) 2 R

n

: x

n

=  (x

0

)g \B(P; 2r):

The Nontangential Maximal Function. For a function u on 
, we de�ne its

nontangential maximal function (u)

�

by

(1.1) (u)

�

(P ) = sup fju(X)j : X 2 
; jX � P j � 2dist(X;@
)g P 2 @
:

We now give the de�nition of the function spaces we will use.

Sobolev and Besov Spaces. For 
 � R

n

, p 2 [1;1) and k = 1; 2; : : : ; we let

W

k;p

(
) denote the space of functions u on 
 such that the norm

kuk

W

k;p

(
)

�

X

j�j�k

kD

�

uk

L

p

(
)
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is �nite.

For 1 � p < 1 and 0 < � < 1, we de�ne W

�;p

(
) to be the collection of

functions u on 
 with the norm

(1.2) kuk

W

�;p

(
)

� kuk

L

p

(
)

+

�

ZZ


�


ju(X)� u(Y )j

p

jX � Y j

n+�p

dXdY

�

1=p

<1:

For 1 < � < 2, we de�ne W

�;p

(
) to be the set of functions on 
 such that

kuk

W

�;p

(
)

� kuk

L

p

(
)

+ kruk

W

��1;p

(
)

<1:

We may de�ne W

�;p

(@
) for 0 < � < 1 and 1 � p < 1 in a similar manner

with the integral over @
 � @
.

For a region D above the graph of a Lipschitz function �, i.e., D = f(x

0

; x

n

) 2

R

n

: x

n

> �(x

0

)g, we de�ne the spaceW

1;2

(@D) as the space of functions f(x

0

; �(x

0

))

= g(x

0

) where g 2 W

1;2

(R

n�1

). Using a partion of unity for @
, we may extend

this de�nition to the boundary of a bounded Lipschitz domain 
 forW

1;2

(@
). We

remark that W

�;p

(@
) may also be de�ned in this manner. See [Gr, p. 20].

We will use W

k;p

0

(
) to denote the closure of C

1

0

(
) in the norm of W

k;p

(
).

If k is a nonnegative integer, we use W

k;p

(
) to denote the dual of W

�k;p

0

(
).

We will use the same notation L

p

(
), W

�;p

(
), W

k;p

(
) etc. for vectorial

counterparts.

Complex Interpolation. We will need the following results on complex interpo-

lation:

(1.3)

�

L

2

(@
);W

1;2

(@
)

�

�

=W

�;2

(@
);

and

(1.4)

�

W

�;2

(@
); C



(@
)

�

�

=W

t;p

(@
)

where

1

p

=

�

2

; and t = �� + (1� �):

When @
 is replaced by R

n

, (1.3) and (1.4) are well known (e.g. see [BL]). To

extend this result to boundaries of Lipschitz domains, we use the following easy

proposition, whose proof is omitted.

Proposition 1.5. Suppose A

i

, B

i

(i = 0; 1) are Banach spaces and fC(�) : � 2

[0; 1]g is a family of Banach spaces such that C(0) = A

0

, C(1) = A

1

and C(�) �

A

0

+A

1

. Also assume that there exist linear operators I : A

0

+A

1

! B

0

+B

1

and

P : B

0

+ B

1

! A

0

+A

1

such that I : C(�) ! [A

0

; A

1

]

�

, P : [A

0

; A

1

]

�

! C(�) are

bounded and P � I = id for each � 2 [0; 1]. Then

[A

0

; A

1

]

�

= C(�):
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To see (1.3), let fB

j

= B(P

j

; r) : j = 1; 2; : : : ;Ng be a covering of @
 by balls

as in the de�nition of Lipschitz domain and �

j

2 C

1

0

(R

n

) such that supp �

j

� B

j

,

0 � �

j

� 1,

P

j

�

j

= 1 on @
. Let �

j

be an isometry of R

n

such that

�

j

(B

j

\ 
) = f(x

0

; x

n

) : x

n

>  

j

(x

0

); j(x

0

; x

n

)j � rg :

We now choose A

0

= L

2

(@
), A

1

= W

1;2

(@
), B

0

= L

2

(R

(n�1)

;R

N

), B

1

=

W

1;2

(R

(n�1)

;R

N

), and C(�) = W

�;2

(@
). If g is a function of @
, we de�ne

Ig by letting the jth component be given by

Ig(x

0

)

j

= (�

j

g)(�

�1

j

(x

0

;  

j

(x

0

))):

We let ~�

j

2 C

1

0

(B(P

j

; 2r) j = 1; : : : ;N be functions satisfying ~�

j

= 1 on B(P

j

; r),

we let �

n

(x

0

; x

n

) = x

0

be projection on the �rst n� 1 coordinates and de�ne

P ((f

j

)

1�j�N

)(Q) =

N

X

j=1

~�

j

(Q)f

j

(�

n

� �

j

(Q)) for Q 2 @
:

With these de�nitions, (1.3) then follows easily from Proposition 1.5. The statement

(1.4) may be proved in the same manner.

The Stokes Operator. To introduce the Stokes operator A, let

C

1

0;�

(
) = f� 2 C

1

0

(
) : div � = 0g;

and L

2

�

(
) be the closure of C

1

0;�

(
) in L

2

(
). We �rst de�ne a quadratic form Q

on C

1

0;�

(
):

Q(u; v) =

Z




ru � rvdX =

n

X

j=1

Z




ru

j

� rv

j

dX:

We then extend this form to D(Q), the closure of C

1

0;�

(
) in the norm

kuk

Q

= kuk

L

2

(
)

+ fQ(u; u)g

1=2

:

It is known that

D(Q) =

�

u 2W

1;2

0

(
) : divu = 0

	

[CF].

We now de�ne the Stokes operator A : D(A) ! L

2

�

(
) by

Z




Au � � = Q(u; �) for all � 2 C

1

0;�

(
)

where the domain of A, D(A), is the collection of u in D(Q) such that v ! Q(u; v)

can be extended to a bounded linear functional on L

2

�

(
). It is well known that A

gives a self-adjoint operator on L

2

�

(
). Also, it is not hard to see that

D(A) =

�

u 2 D(Q) : ��u+r� 2 L

2

�

(
) for some � 2 L

2

(
)
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and

Au = ��u+r�; for u 2 D(A):

This is the de�nition of the Stokes operator given in [DW].

Finally we will follow the standard practice of letting C denote a constant which

varies. Throughout this paper C will depend at most in the dimension n and the

Lipschitz domain 
 through the collection of balls used to cover the boundary and

the maximum of kr 

i

k

1

where  

i

are the functions whose graphs de�ne @
.

2. The Imbedding of D(A)

In this section we will establish the imbedding estimate (0.1) for the domain of

A.

We will need to consider both the Dirichlet problem with nonzero forcing term

f

(DP)

8

>

<

>

:

��u+r� = f in 
;

div u = 0 in 
;

u = 0 on @
;

and the problem with inhomogeneous boundary data:

(BVP)

8

>

<

>

:

��u+r� = 0 in 
;

div u = 0 in 
;

u = g on @
:

Obviously, since divu = 0 in 
, the boundary data g should verify the necessary

condition

(2.1)

Z

@


< g;N > d� = 0

where N denotes the outward unit normal to @
 and < ; > the scalar product on

R

n

.

The following result is due to Fabes, Kenig and Verchota [FKV]. The estimates

for the nontangential maximal functions, the existence and the uniqueness may

be found in their paper. The estimates for the solution in Sobolev spaces were

announced in that paper, but no proof has appeared. The proof may be obtained

by combining the area integral estimates in the appendix of this paper, with the

argument given by E. Fabes in [F] to establish the corresponding Sobolev estimates

for harmonic functions. We remark that in the �rst inequality on the top of page 69

of [F], the integration on R

n�1

�R

n�1

should only range over f(x; y) : jx� yj > tg.

Theorem 2.2. (Fabes, Kenig and Verchota [FKV]) Let 
 be a bounded Lipschitz

domain in R

n

, n � 3. Suppose g 2 L

2

(@
) and veri�es the condition (2.1). Then

there exists a solution u to (BVP) which satis�es

Z

@


j(u)

�

j

2

d� � C

Z

@


jgj

2

d�:
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This solution is unique in the class of u satisfying (u)

�

2 L

2

(@
). In addition, we

have the estimate

kuk

W

1=2;2

(
)

� C

Z

@


jgj

2

d�:

Furthermore, if g 2W

1;2

(@
), then we also have

k(ru)

�

k

L

2

(@
)

+ kuk

W

3=2;2

(
)

� Ckgk

W

1;2

(@
)

:

We shall also need the H�older estimates established in [S2, Theorem 0.2, p. 801]

for the three-dimensional Lipschitz domains.

Theorem 2.3. (Z. Shen [S2]) Let 
 be a bounded Lipschitz domain in R

3

. There

exists �

0

> 0 so that if 0 < � < �

0

, and g 2 C

�

(@
) veri�es the condition (2.1),

then the solution to (DP) lies in C

�

(
) and satis�es

sup

X2


�(X)

1��

jru(X)j � Ckgk

C

�

(@
)

where �(X) = dist(X;@
).

Our estimates for the Stokes operator A will be obtained by interpolating be-

tween the estimates of Theorem 2.2 and 2.3. We begin with the following lemma.

Lemma 2.4. Let 
 be a bounded Lipschitz domain in R

3

. There exists " > 0 so

that if 2 � p � 3 + ", and g 2W

1�1=p;p

(@
) satis�es the condition (2.1), then the

solution u of (BVP) for Stokes equations with boundary data g satis�es

�

Z




jru(X)j

p

dX

�

1=p

� Ckgk

W

1�1=p;p

(@
)

:

Proof. Let � be a smooth vector �eld on R

3

such that < �;N >� c

0

> 0 a.e. on

@
. Recall that N is the outward unit normal to @
.

For g 2W

�;p

(@
), we de�ne Sg by

Sg(P ) = g(P )�

R

@


< g;N > d�

R

@


< �;N > d�

� �(P ) for P 2 @
:

It is easy to see that

Z

@


< Sg;N > d� = 0:

Now let u be the solution of (BVP) with boundary data Sg. We observe that

Theorem 2.2, the area integral estimate in Appendix A (Theorem A.1) and interior

estimates imply that

�

Z




�(X)

3

jr

2

u(X)j

2

dX

�

1=2

� CkSgk

L

2

(@
)

� Ckgk

L

2

(@
)

;

�

Z




�(X)jr

2

u(X)j

2

dX

�

1=2

� CkSgk

W

1;2

(@
)

� Ckgk

W

1;2

(@
)

:
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It then follows from the complex interpolation that

(2.5)

�

Z




�

�(X)

3

2

��

jr

2

u(X)j

�

2

dX

�

1=2

� Ckgk

W

�;2

(@
)

; 0 < � < 1:

where we have used (1.3).

Now, since 
 � R

3

, we may apply Theorem 2.3 and the interior estimates to

obtain

(2.6) sup

X2


�

�(X)

2�

jr

2

u(X)j

	

� CkSgk

C



(@
)

� Ckgk

C



(@
)

for 0 <  < �

0

. If we interpolate between (2.5) and (2.6) and use (1.4), we obtain

that

(2.7)

�

Z




�

�(X)jr

2

u(X)j

	

p

dX

�

1=p

� Ckgk

W

1�

1

p

;p

(@
)

for 2 < p < 3 + ".

To see this, set � = 2=p < 1, and choose � and  so that

1 = (

3

2

� �)� + (2 � )(1 � �):

Thus,

t = �� + (1� �) = 1�

1

p

:

We use (1.4) to identify the interpolation space

�

W

�;2

(@
); C



(@
)

�

�

=W

t;p

(@
):

Note that 2=p < 1 implies that p > 2 and the restrictions that � < 1 and  < �

0

imply that

� =

1� 

�+

1

2

� 

>

2(1� �

0

)

3� 2�

0

or

p =

2

�

<

3� 2�

0

1� �

0

� 3 + "; " =

�

0

1� �

0

> 0:

Finally, by the Hardy inequality [St, p. 272],

Z




jru(X)j

p

dX � C

Z




j�(X)r

2

u(X)j

p

dX + sup

X2K

jru(X)j

p

� Ckgk

p

W

1�

1

p

;p

(@
)

;

where K is a compact subset of 
. The proof is complete.

Let �(X) = (�

ij

(X))

1�i;j�n

be the matrix of fundamental solutions and q(X) =

(q

j

(X))

1�j�n

be the corresponding pressure vector where

(2.8) �

ij

(X) =

1

2!

n

�

1

(n� 2)

�

ij

jXj

n�2

+

x

i

x

j

jXj

n

�

; q

j

(X) =

1

!

n

x

j

jXj

n

:
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Theorem 2.9. Let 
 be a bounded Lipschitz domain in R

3

. Suppose f 2W

�1;p

(
)

where (3 + ")=(2 + ") < p < 3 + " and " is the same as in Lemma 2.4. Then there

exist u 2W

1;p

0

(
) and � 2 L

p

(
) so that

(2.10)

�

��u+r� = f;

div u = 0

in 
 and

kruk

L

p

(
)

+ inf

c2R

k� � ck

L

p

(
)

� Ckfk

W

�1;p

(
)

:

The solution u is unique and � is unique up to a constant.

Proof. Let 2 < p < 3+" and f 2W

�1;p

(
). We may extend f to lie inW

�1;p

(R

3

).

Let v = ��f 2W

1;p

(R

3

). By the trace theorem [Gr, p. 33], v 2W

1�1=p;p

(@
) and

we obtain

(2.11) kvk

W

1�

1

p

;p

(@
)

� Ckvk

W

1;p

(
)

� Ckfk

W

�1;p

(
)

:

Now let u = v � w where w is the solution of (BVP) for the Stokes equations

with boundary data vj

@


. Then u satis�es (2.10) and

kruk

L

p

(
)

� krvk

L

p

(
)

+ krwk

L

p

(
)

� C

�

kfk

W

�1;p

(
)

+ kvk

W

1�

1

p

;p

(@
)

�

� Ckfk

W

�1;p

(
)

by Lemma 2.4 and (2.11).

We may obtain the existence of a solution and the estimates of u for (3+")=(2+

") < p < 2 by duality.

For the pressure term �, we have

inf

c2R

k� � ck

L

p

(
)

� kr�k

W

�1;p

(
)

� k�uk

W

�1;p

(
)

+ kfk

W

�1;p

(
)

� Ckruk

L

p

(
)

+ kfk

W

�1;p

(
)

� Ckfk

W

�1;p

(
)

:

Finally, the uniqueness for p � 2 follows by energy estimates. If p < 2, let

��u+r� = 0 and u 2W

1;p

0

(
). Choose f 2 L

p

0

(
). We may solve��v+rq = f ,

div v = 0 in 
, v 2W

1;p

0

(
), and thus obtain that

Z




< f; u > dX =

Z




rv � rudX = 0; for any f 2 L

p

0

(
);

or that u = 0.

Our next result, which is valid for Lipschitz domains in R

n

(n � 3), gives a

sharper estimate for solutions of the Dirichlet problem. It will yield the best em-

bedding of D(A) in the scale of Sobolev spaces W

s;2

(
).
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Theorem 2.12. Let 
 be a bounded Lipschitz domain in R

n

(n � 3) and f 2

L

2

(
). Suppose that (u; �) is the solution of (DP) with data f , then for q

0

=

2n=(n+ 1), we have the estimate

kuk

W

3=2;2

(
)

+ inf

c2R

k� � ck

W

1=2;2

(
)

� Ckfk

L

q

0

(
)

:

Proof. We construct the solution of (DP) as the sum of the free space solution

(v; ~�) = (� � f; q � f) and the solution of the boundary value problem

8

>

<

>

:

��w +r = 0 in 
;

divw = 0 in 
;

w = �v on @
:

By the Calder�on{Zygmund estimates [St], we have

(2.13) kr

2

vk

L

p

(R

n

)

+ kr~�k

L

p

(R

n

)

� Ckfk

L

p

(R

n

)

for 1 < p <1. This estimate with p = q

0

= 2n=(n+1) and the Sobolev embedding

theorem imply that

kvk

W

3=2;2

(
)

+ k~�k

W

1=2;2

(
)

� Ckfk

L

q

0

(
)

:

Now consider (w; ). We claim that the boundary values of w, ���f j

@


, satisfy

(2.14) kwk

W

1;2

(@
)

� Ckfk

L

q

0

(
)

:

Then the desired estimate,

kwk

W

3=2;2

(
)

+ k k

W

1=2;2

(
)

� Ckfk

L

q

0

(
)

will follow from Theorem 2.2.

To establish (2.14), we observe that

(2.15)

Z

@


jrvj

2

d� � C

Z




�

jrvj

2

+ jrvj jr

2

vj

�

dX:

This follows by applying the divergence theorem to � � jrvj

2

where � is a smooth

vector �eld on R

n

with the property < �;N >� c

0

> 0 a.e. on @
. By (2.13), we

have jr

2

vj 2 L

q

0

(R

n

) while

jrv(X)j � C

Z




jf(Y )j

jX � Y j

n�1

dY

satis�es

(2.16) krvk

L

q

0

0

(R

n

)

� Ckfk

L

q

0

(R

n

)

; q

0

0

=

q

0

q

0

� 1

:

Since q

0

0

> 2, the estimate for rw on @
 follows from (2.15), (2.16) and (2.13).

The estimate for w is easier and we omit the details.
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Theorem 2.17. Suppose 
 is a bounded Lipschitz domain in R

3

. Then

D(A) �W

1;p

0

(
) \W

3=2;2

(
)

for some p = p(
) > 3. Moreover, for u 2 D(A),

kuk

W

1;p

0

(
)

+ kuk

W

3=2;2

(
)

� CkAuk

L

2

(
)

:

Proof. Let u 2 D(A). Then

8

>

<

>

:

��u+r� = f in 
;

div u = 0 in 
;

u 2W

1;2

0

(
);

where f = Au 2 L

2

�

(
). Since

L

2

(
) �W

�1;p

(
)

for p � 6 in R

3

, the theorem follows immediately from Theorems 2.9 and 2.12.

3. Some L

1

estimates

In this section we will give the proof of the estimate (0.2). We are only able to

prove this estimate in three dimensions and thus throughout this section we will

assume that 
 is a bounded Lipschitz domain in R

3

.

Theorem 3.1. There exists a constant C > 0 such that, for u 2 D(A),

kuk

L

1

(
)

� Ckruk

1=2

L

2

(
)

kAuk

1=2

L

2

(
)

:

By the de�nition of A and a limiting argument,

Z




Au � udX =

Z




ru � rudX:

It then follows from the Cauchy inequality that

kruk

2

L

2

(
)

� kAuk

L

2

(
)

kuk

L

2

(
)

:

Thus, we have

Corollary 3.2. There exists a constant C > 0 such that, for u 2 D(A),

kuk

L

1

(
)

� Ckuk

1=4

L

2

(
)

kAuk

3=4

L

2

(
)

:

As in the case of smooth domains, A

�1

: L

2

�

(
) ! L

2

�

(
) is a compact operator.

Hence, there exists a sequence of positive numbers f�

k

g and an orthonormal basis

f!

k

g of L

2

�

(
) such that A!

k

= �

k

!

k

, !

k

2 D(A) and lim

k!1

�

k

=1.
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Corollary 3.3. Let 
 be a bounded Lipschitz domain in R

3

. Then there exists

c > 0 such that

�

k

� c

�

k

j
j

�

2=3

:

With Corollary 3.2, the proof is exactly the same as in the smooth case. See

[CF, p. 38-39].

To prove Theorem 3.1, we start with a reverse H�older inequality.

Lemma 3.4. Let X

0

2 
, R > 0 be small, and D(X

0

; R) = B(X

0

; R)\
. Assume

(u; �) satis�es the Stokes equations

�

��u+r� = 0;

div u = 0

in D(X

0

; 8R) and u = 0 on @
. Then

 

1

R

3

Z

D(X

0

;R)

jruj

p

0

dX

!

1=p

0

� C

 

1

R

3

Z

D(X

0

;4R)

jruj

2

dX

!

1=2

where p

0

> 2 depends only on 
.

Proof. We begin with a Caccioppoli type inequality for the Stokes equations (see

[S2, Lemma 1.5, p. 804]). We consider two cases. If B(X

0

; 2R) \ @
 6= ;, we have

Z

D(X

0

;R)

jruj

2

dX �

C

R

2

Z

D(X

0

;3R)

juj

2

dX:

On the other hand, if B(X

0

; 2R) � 
, we get

Z

D(X

0

;R)

jruj

2

dX �

C

R

2

Z

D(X

0

;3R)

ju� u

R

j

2

dX

where

u

R

=

1

jB(X

0

; 2R)j

Z

B(X

0

;2R)

u(X)dX:

In both cases, by Sobolev{Poincar�e inequality, we obtain

 

1

jD(X

0

; R)j

Z

D(X

0

;R)

jruj

2

dX

!

1=2

� C

 

1

jD(X

0

; 3R)j

Z

D(X

0

;3R)

jruj

6=5

dX

!

5=6

:

The lemma then follows from the usual reverse H�older inequality (e.g., see [Gi,

Proposition 1.1, p. 122]).

We now give the

Proof of Theorem 3.1.

Let u 2 D(A) and f = Au 2 L

2

�

(
). Fix X

0

2 
. Let D

t

= B(X

0

; t) \ 
 where

t 2 (0; 1) is to be chosen later.
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Let f

1

= f in D

t

and 0 otherwise. Let f

2

= f � f

1

. We use (u

i

; �

i

), i = 1; 2

to denote solutions of (DP) for the Stokes equations with data f

i

. By uniqueness,

u = u

1

+ u

2

.

First we estimate u

1

(X

0

). We claim that

ju

1

(X

0

)j � Ct

1=2

kfk

L

2

(
)

:

Indeed, for any X 2 D

t

, by the imbedding theorem of Morrey [GT, Theorem 7.17,

p. 163],

ju

1

(X) � u

1

(X

0

)j � Ct



kru

1

k

L

p

(
)

where p > 3 and  = 1� 3=p. It then follows from Theorem 2.9 that

ju

1

(X)� u

1

(X

0

)j � Ct



kf

1

k

W

�1;p

(
)

� Ct



kf

1

k

L

q

(
)

� t

1=2

kfk

L

2

(
)

where 1=q = 1=p + 1=3 and we also used the Sobolev imbedding theorem [GT,

Theorem 7.26, p. 171] and H�older inequality (we also assume that p < 6).

Now we integrate above inequality inX overD

t

. This, together with the Sobolev

imbedding, gives

ju

1

(X

0

)j �

�

1

jD

t

j

Z

D

t

ju

1

j

6

dX

�

1=6

+ Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

kru

1

k

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

kf

1

k

W

�1;2

(
)

+ Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

kf

1

k

L

6=5

(
)

+ Ct

1=2

kfk

L

2

(
)

� Ct

1=2

kfk

L

2

(
)

:

To estimate u

2

(X

0

), let s 2 [t=8; t=4] and X 2 D

s

. Note that ��u

2

+r�

2

= 0

and divu

2

= 0 in D

s

. We may apply Theorem 2.3 on D

s

to obtain

ju

2

(X) � u

2

(X

0

)j � Ct

�

sup

P

1

;P

2

2@D

s

P

1

6=P

2

ju

2

(P

1

) � u

2

(P

2

)j

jP

1

� P

2

j

�

� Ct

�

�

Z

@D

s

jru

2

j

p

0

d�

�

1=p

0

;

where p

0

= 2=(1��) > 2 and we have used the Sobolev imbedding on the set @D

s

.
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By integration in s over [t=8; t=4], we get

ju

2

(X) � u

2

(X

0

)j � Ct

��1=p

0

 

Z

D

t=4

jru

2

j

p

0

dX

!

1=p

0

� Ct

 

1

jD

t=4

j

Z

D

t=4

jru

2

j

p

0

dX

!

1=p

0

� Ct

�

1

jD

t

j

Z

D

t

jru

2

j

2

dX

�

1=2

� Ct

(

�

1

jD

t

j

Z

D

t

jruj

2

dX

�

1=2

+

�

1

jD

t

j

Z

D

t

jru

1

j

2

dX

�

1=2

)

� Ct

�1=2

kruk

L

2

(
)

+ Ct

�1=2

kru

1

k

L

2

(
)

� Ct

�1=2

kruk

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

where we used the reverse H�older inequality (Lemma 3.4) in the third inequality.

Thus,

ju

2

(X

0

)j �

�

1

jD

t

j

Z

D

t

ju

2

j

6

dX

�

1=6

+ Ct

�1=2

kruk

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

ku

2

k

L

6

(
)

+ Ct

�1=2

kruk

L

2

(
)

+Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

kru

2

k

L

2

(
)

+Ct

�1=2

kruk

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

kruk

L

2

(
)

+ Ct

�1=2

kru

1

k

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

� Ct

�1=2

kruk

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

:

To summarize, we have proved that

ju(X

0

)j � Ct

�1=2

kruk

L

2

(
)

+ Ct

1=2

kfk

L

2

(
)

for any t 2 (0; c

0

), where c

0

depends only on 
.

Finally, by the energy estimate, kruk

L

2

(
)

� C

0

kfk

L

2

(
)

, so we may choose

t =

c

0

kruk

L

2

(
)

2C

0

kfk

L

2

(
)

< c

0

to obtain

ju(X

0

)j � Ckruk

1=2

L

2

(
)

kAuk

1=2

L

2

(
)

:

The proof is �nished.

Appendix A

In this appendix, we present a simple proof of the area integral estimates for

solutions of Stokes equations.
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Theorem A.1. Let 
 be a bounded Lipschitz domain in R

n

, n � 3. Suppose

�u = r�, div u = 0 in 
, and (u)

�

2 L

2

(@
). Then

Z




jru(X)j

2

�(X)dX � C

Z

@


juj

2

d�

and

Z

@


juj

2

d� � C

�

Z




jru(X)j

2

�(X)dX +

Z




ju(X)j

2

dX

�

where �(X) = dist(X;@
).

Theorem A.1 is due to E. Fabes, C. Kenig and G. Verchota (unpublished). The

proof given here is based on an idea of B. Dahlberg, C. Kenig, J. Pipher and

G. Verchota [DKPV] developed for elliptic systems, and some observations on the

pressure term �.

The following lemma is due to C. Kenig and E. Stein.

Lemma A.2. Suppose  : R

n�1

! R is a Lipschitz function. Let � 2 C

1

0

(R

n�1

)

be radial, and � � 0,

R

�dx = 1. Then, if � � C(n; kr k

L

1

),

(x; t) ! (x; y) = (x; �(x; t))

is a bi-Lipschitz map from R

n

+

to D = f(x; y) : y >  (x)g where x 2 R

n�1

; t; y 2 R

and

�(x; t) = �t+ (�

t

�  )(x); �

t

(x) =

1

t

n�1

�(

x

t

):

Moreover, jr

2

�(x; t)j

2

tdxdt is a Carleson measure on R

n

+

.

Lemma A.3. Let D = f(x; y) 2 R

n

: y >  (x)g where  : R

n�1

! R is a

Lipschitz function. Suppose that

�

��u+r� = f

div u = g

in D. Also assume that u, � have compact supports and (u)

�

2 L

2

(@D). Then

Z

D

jruj

2

�(X)dX � C

�

Z

@D

j(u)

�

j

2

d� +

Z

D

j�j

2

�(X)dX +

Z

D

jr�j

2

�

3

(X)dX

+

Z

D

j�g + div f j juj�

2

(X)dX +

Z

D

jf j juj�(X)dX

�

and

Z

@D

juj

2

d� � "

Z

@D

j(u)

�

j

2

d� + C

"

�

Z

D

jruj

2

�(X)dX +

Z

D

j�j

2

�(X)dX

+

Z

D

jr�j

2

�

3

(X)dX +

Z

D

j�g + div f j juj�

2

(X)dX +

Z

D

jf j juj�(X)dX

�
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for any " > 0.

Proof. Let � : R

n

+

! D be de�ned by

�(x; t) = (x; y) = (x; �(x; t))

where �(x; t) = �t + �

t

�  (x) is given in Lemma A.2.

Let v = u � �, q = � � � be de�ned on R

n

+

. Note that v and q have compact

supports in R

n

+

and satisfy

(A.4)

8

>

>

<

>

>

:

@v

@t

=

@u

@y

� � �

@�

@t

@v

@x

i

=

@u

@x

i

� �+

@u

@y

� � �

@�

@x

i

; i = 1; 2; : : : ; n� 1:

It follows from integration by parts that

(A.5)

Z

R

n�1

ju � �j

2

dx =

Z

R

n�1

jvj

2

dx = �2

ZZ

R

n

+

@v

@t

� v dxdt

= 2

ZZ

R

n

+

tj

@v

@t

j

2

dxdt+ 2

ZZ

R

n

+

t

@

2

v

@t

2

� v dxdt

= 2

ZZ

R

n

+

tj

@�

@t

j

2

j

@u

@y

� �j

2

dxdt+ 2

ZZ

R

n

+

tj

@�

@t

j

2

@

2

u

@y

2

� � � u � � dxdt +G;

where G denotes terms which are bounded in absolute values by

(A.6)

C

ZZ

R

n

+

tjr

2

�j jru � �j ju � �j dxdt + C

ZZ

R

n

+

tjr

2

�j j� � �j ju � �j dxdt

+ C

ZZ

R

n

+

t

2

jr

2

�j jr� � �j ju � �j dxdt +C

ZZ

R

n

+

tj� � �j jru � �j dxdt

+ C

ZZ

R

n

+

t

2

jr� � �j jru � �j dxdt:

By the Stokes equations �u = r� � f , we have

@

2

u

@y

2

� � = �

@

2

u

@x

2

i

� �+r� � �� f � �

= �

@

@x

i

�

@u

@x

i

� �

�

+

@

2

u

@y@x

i

� � �

@�

@x

i

+r� � �� f � �

= �

@

@x

i

�

@u

@x

i

� �

�

+

@

@x

i

�

@u

@y

� �

�

�

@�

@x

i

�

@

2

u

@y

2

� � � jr

x

�j

2

+r� � �� f � �

where the repeated index i is summed over f1; 2; : : : ; n�1g andr

x

= (@=@x

1

; : : : ; @=@x

n�1

).

It follows that

@

2

u

@y

2

� �

=

1

1 + jr

x

�j

2

�

�

@

@x

i

�

@u

@x

i

� �

�

+

@

@x

i

�

@u

@y

� �

�

�

@�

@x

i

+r� � �� f � �

�

:
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Thus, we may use integration by parts to obtain

ZZ

R

n

+

tj

@�

@t

j

2

@

2

u

@y

2

� � � u � � dxdt

=

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

�

@u

@x

i

� � �

@

@x

i

fu � �g dxdt

�

ZZ

R

n

+

t(

@�

@t

)

2

@�

@x

i

1 + jr

x

�j

2

�

@u

@y

� � �

@

@x

i

fu � �g dxdt

+

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

� fr� � �� f � �g � u � � dxdt+G

=

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

� j

@u

@x

i

� �j

2

dxdt

�

ZZ

R

n

+

t(

@�

@t

)

2

jr

x

�j

2

1 + jr

x

�j

2

� j

@u

@y

� �j

2

dxdt

+

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

� fr� � �� f � �g � u � � dxdt+G:

This, together with (A.5), implies that

(A.7)

Z

R

n�1

ju � �j

2

dx = 2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

� jru � �j

2

dxdt

+ 2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

� fr� � �� f � �g � u � � dxdt +G:

It remains to estimate

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

r� � � � u � � dxdt:

To this end, we let u = (u

1

; u

2

; : : : ; u

n

) and note that

r� � � � u � � =

@�

@x

i

� � � u

i

� �+

@�

@y

� � � u

n

� �

=

@

@x

i

f� � �g � u

i

� �+

@�

@y

� � �

�

u

n

� �� u

i

� �

@�

@x

i

�

:

Thus, the integration by parts yields

(A.8)

2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

r� � � � u � � dxdt

=2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

@�

@y

� � �

�

u

n

� �� u

i

� �

@�

@x

i

�

dxdt +G:
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Now, we write 2t =

@t

2

@t

. Using integration by parts, we obtain

2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

�

@�

@y

� � �

�

u

n

� �� u

i

� �

@�

@x

i

�

dxdt

= �

ZZ

R

n

+

t

2

(

@�

@t

)

3

1 + jr

x

�j

2

�

@

2

�

@y

2

� � �

�

u

n

� �� u

i

� �

@�

@x

i

�

dxdt+G:

Since �u = r� � f , we have �� = �(divu) + div f = �g +div f . Thus,

@

2

�

@y

2

� � = �

@

2

�

@x

2

i

� �+�g � �+ (div f) � �

= �

@

@x

i

�

@�

@x

i

� �

�

+

@

@x

i

�

@�

@y

� �

�

�

@�

@x

i

�

@

2

�

@y

2

� � jr

x

�j

2

+�g � �+ (div f) � �:

It follows that

@

2

�

@y

2

� � =

1

1+ jr

x

�j

2

�

�

@

@x

i

�

@�

@x

i

� �

�

+

@

@x

i

�

@�

@y

� �

�

�

@�

@x

i

+�g � �+ (div f) � �

�

:

Hence, the integration by parts again yields

2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

�

@�

@y

� � �

�

u

n

� �� u

i

� �

@�

@x

i

�

dxdt

= �

ZZ

R

n

+

t

2

(

@�

@t

)

3

(1 + jr

x

�j

2

)

2

f�g + div fg � � �

�

u

n

� �� u

i

� �

@�

@x

i

�

dxdt +G:

Thus, putting together (A.7), (A.8) and the above estimate, we have proved that

Z

R

n�1

ju � �j

2

dx = 2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

jru � �j

2

dxdt

�

ZZ

R

n

+

t

2

(

@�

@t

)

3

(1 + jr

x

�j

2

)

2

f�g + div fg � � �

�

u

n

� �� u

i

� �

@�

@x

i

�

dxdt

� 2

ZZ

R

n

+

t(

@�

@t

)

2

1 + jr

x

�j

2

f � � � u � � dxdt+G:

This implies that

Z

@D

juj

2

d� � C

Z

D

jruj

2

�(X)dX +C

Z

D

j�g + div f j juj�

2

(X)dX

+ C

Z

D

jf j juj�(X)dX + jGj
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and

Z

D

jruj

2

�(X)dX � C

Z

@D

juj

2

d� +C

Z

D

j�g + div f j juj�

2

(X)dX

+ C

Z

D

jf j juj�(X)dX + jGj:

Since jr

2

�j

2

tdxdt is a Carleson measure, by Cauchy-Schwartz inequality and

(A.6), we have

jGj � C

�

Z

D

jruj

2

�(X)dX

�

1=2

�

Z

@D

j(u)

�

j

2

d�

�

1=2

+C

�

Z

D

j�j

2

�(X)dX

�

1=2

�

Z

@D

j(u)

�

j

2

d�

�

1=2

+C

�

Z

D

jr�j

2

�

3

(X)dX

�

1=2

�

Z

@D

j(u)

�

j

2

d�

�

1=2

+C

�

Z

D

j�j

2

�(X)dX

�

1=2

�

Z

D

jruj

2

�(X)dX

�

1=2

+C

�

Z

D

jr�j

2

�

3

(X)dX

�

1=2

�

Z

D

jruj

2

�(X)dX

�

1=2

:

The lemma now follows easily from the Cauchy inequality.

Lemma A.9. Let 
 be a bounded Lipschitz domain in R

n

, n � 3. Suppose that

�u = r�, divu = 0 in 
, and (u)

�

2 L

2

(@
). Then there exists a function ~� such

that ~� = � + c and

Z




j~�(X)j

2

�(X)dX +

Z




jr~�(X)j

2

�

3

(X)dX � C

Z

@


juj

2

d�:

Proof. By the L

2

estimates in [FKV], u can be represented in terms of a double

layer potential:

u

i

(X) =

Z

@


�

@

@y

k

f�

ij

(X � Y )gN

k

(Y )� q

i

(X � Y )N

j

(Y )

�

h

j

(Y )d�(Y )

where khk

L

2

(@
)

� Ckuk

L

2

(@
)

, (�

ij

(X)) is the matrix of fundamental solutions

and (q

i

(X)) is the corresponding pressure vector given in (2.8).

Note that

��

ij

(X) =

1

2!

n

�

�

x

i

x

j

jXj

n

�

=

1

!

n

r

�

x

i

jXj

n

�

� rx

j

=

1

!

n

@

@x

i

�

x

j

jXj

n

�

:

Thus,

�u

i

(X) = �

Z

@


@

@y

k

f�

ij

(X � Y )gN

k

(Y )h

j

(Y ) d�(Y )

= �

@

@x

i

@

@x

k

Z

@


x

j

� y

j

!

n

jX � Y j

n

N

k

(Y )h

j

(Y ) d�(Y )

=

@~�

@x

i
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where

~�(X) = �

@w

k

(X)

@x

k

; and w

k

(X) =

Z

po

x

j

� y

j

!

n

jX � Y j

n

N

k

(Y )h

j

(Y ) d�(Y ):

Clearly, ~� = � + c since r~� = r�. Note that w

k

is harmonic in 
 and (w

k

)

�

2

L

2

(@
). By the area integral estimates for the harmonic function [D],

Z




j~�j

2

�(X)dX �

n

X

k=1

Z




jrw

k

j

2

�(X)dX � C

n

X

k=1

Z

@


j(w

k

)

�

j

2

d�

� C

Z

@


jhj

2

d� � C

Z

@


juj

2

d�:

Also, since �~� = 0 in 
, by interior estimates,

Z




jr~�(X)j

2

�

3

(X)dX � C

Z




j~�(X)j

2

�(X)dX � C

Z

@


juj

2

d�:

This completes the proof.

We are now in a position to give the

Proof of Theorem A.1.

Fix P 2 @
 and r > 0 small. Using linear transformations both in the variable

X and functions u, � (see [S1, p. 347]), we may assume that


 \ B(P; 3r) = f(x; y) 2 R

n

: y >  (x)g \ B(P; 3r):

Let � 2 C

1

0

(B(P; 2r)) such that � � 1 on B(P; r). Since �u = r�, div� = 0 in


, we have

�(u�) = (�u) � + 2ru � r� + u ���

= (r�) � + 2ru � r� + u ���

= r(��)� �r� + 2ru � r� + u ���

= r(��)� f

where f = �r� � 2ru � r� � u ���.

Note that jf j � Cfj�j+ jruj+ jujg. Also, div(u�) = u � r� � g and jgj � Cjuj.

Moreover, it is not hard to see that

j�g + div f j � Cfjruj+ jr�j+ j�j+ jujg:

We now apply Lemma A.3 to the equations

��(u�) +r(��) = f; div (u�) = g

in D = f(x; y) 2 R

n

: y >  (x)g. Let D

r

= 
 \B(P; r). We obtain

Z

D

r

jruj

2

�(X)dX � C

Z

@


juj

2

d� + C

Z




j�j

2

�(X)dX + C

Z




jr�j

2

�

3

(X)dX

+ C

Z




jruj juj�

2

(X)dX + C

Z




juj

2

dX

� C

Z

@


juj

2

d�;
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where we have used Lemma A.9 in the second inequality. It follows that

Z




jruj

2

�(X)dX � C

Z

@


juj

2

d�:

To �nish the proof, note that Lemma A.3 also gives

Z

@
\B(P;r)

juj

2

d� � "

Z

@


j(u)

�

j

2

d� + C

"

�

Z




jruj

2

�(X)dX +

Z




juj

2

dX

Z




j�j

2

�(X)dX +

Z




jr�j

2

�

3

(X)dX

�

:

It then follows from the L

2

-estimates [FKV] that

Z

@


juj

2

d� � C

�

Z




jruj

2

�(X)dX +

Z




j�j

2

�(X)dX +

Z




juj

2

dX

�

:

This estimate holds for any pressure term �. In particular, we may choose � such

that �(X

0

) = 0 for some X

0

2 
. Then, by the Hardy inequality [St, p. 272],

Z




j�j

2

�(X)dX � C

Z




jr�j

2

�

3

(X)dX � C

Z




jr

2

uj

2

�

3

(X)dX

� C

Z




jruj

2

�(X)dX

where the last inequality follows from the interior estimates.

Thus,

Z

@


juj

2

d� � C

�

Z




jruj

2

�(X)dX +

Z




juj

2

dX

�

:

The proof is complete.
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